

Tethys RESTful Web Services Interface
A manual for accessing a Tethys server using a representational state transfer interface

Tethys, Antioch mosaic, 3rd century from Baltimore Museum of Art

 Tethys Web Services 2

Contents
Introduction ... 2

XQuery .. 3

Collection resources .. 3

GET – Retrieval of documents ... 3

POST – Adding/changing documents ... 4

POST add .. 4

POST ODBC ... 5

POST rebuild .. 5

DELETE – Deletion of documents ... 7

Attach Resource .. 7

BatchLogs Resource ... 7

References ... 8

Introduction
Tethys provides web services via a representational state transfer (REST, Fielding, 2000)
interface. RESTful architectures identify resources via uniform resource locators (URLs) and
provide operations to create, remove, update and delete items associated with the resource. It is
assumed that the reader is familiar with Tethys and this work merely documents the interface
that can be used by other programs to interact with Tethys.

Tethys provides a series of resources to the user:

• Attach – Document attachments, e.g. a spectrogram or short waveform.
• BatchLogs – Logs for batch operations, primarily used in rebuilding the database from

source documents.
• XQuery – A resource to query the Tethys database.
• Collection resources – These resources represent individual Tethys collections. Current

collection resources are:
o Detections
o Deployments
o Events
o Localizations
o mediator_cache
o SourceMaps
o ITIS
o SourceMaps
o SpeciesAbbreviations

 Tethys Web Services 3

An example resource for a server running on port 9779 (the default port) accessed from the
server machine would be: http://localhost:9779/XQuery. Examples throughout this document
will use localhost as the server, these should be updated with the desired server’s address.

Clients can use hypertext transfer protocol (HTTP) to operate on these resources via the methods
GET, PUT, DELETE, and POST. In general, GET is used to access part of a resource, PUT to
add information to a resource, DELETE to remove part of a resource, and POST to either update
or add to the resource. PUT and POST can be somewhat confusing, as any message to the server
that requires a multi-part form data (e.g. attachments) must use a POST message. In Tethys,
POST is used to add documents to the database and to query. POST is used for queries as the
XQuery is passed as field “XQuery” in a multipart form.

XQuery Resource

POST – Run database query
POST is the only method supported for resource XQuery. A body attachment named XQuery is
expected with the post operation and should contain a valid XQuery. See the Tethys manual for
information on XQuery and our extensions to support external collections (e.g. physical data
such as sea surface temperature). The result is returned in XML.

Optional form variables:

• plan – When plan is present and have a value > 0, the query is not run, but instead the
database manager will return an XML document describing how the query will be
executed. This allows one to examine details such as whether or not indices are used.
See the chapter in the Oracle Berkeley db XML Getting started Guide on verifying
indices using query plans for details.
CAVEATS: Does not currently support external XQuery queries using external
collections.

• dataType – Type of data to return. Defaults to XML. Jeff, please add documentation for
plot and save.

Collection Resources

GET – Retrieval of documents
There are two ways in which resources can be retrieved, via the XQuery resource (described in
its own section) or via the GET operator on the resource.

GET on a resource URL (e.g. http://localhost:9779/Detections) has the following behaviors:

1. No arguments – Returns the number of XML documents in the collection

2. Path argument – Interprets the path argument as an XPath query. The namespace
tethys.sdsu.edu is bound to the abbreviation ty. Example query:
http://localhost:9779//Detections/ty:Detections[DataSource%2FProj

 Tethys Web Services 4

ect = "SOCAL" and DataSource%2FSite = "M" and
DataSource%2FDeployment= 34]
Note that standard URL escapes such as %2F for / must be used for /s and other
characters that are for XPath instead of part of the URL.

3. Document Identifier parameter – Document identifiers are derived from the basename of

documents that are submitted to Tethys. This is specified via ?DocId:
http://localhost:9779//Detections/?DocId= SOCAL45H_HF_Gg_Lo_jst
where SOCAL45H_HF_Gg_Lo_jst was derived from detection document
SOCAL45H_HF_Gg_Lo_jst.xls that was submitted to the database.

POST – Adding/changing documents
New documents can be added with the POST operator. POST supports several methods for
adding new documents that are specified as part of the path: add, ODBC, and rebuild. It is
assumed that the user is familiar with importing documents in Tethys, details can be found in the
Tethys manual.

POST add
The add method can be used to add Microsoft Office Excel spreadsheets, XML documents, and
comma separated value documents. It supports the following variables and multipart body
components:

Variables:

• overwrite – Overwrite an existing document: 0 not allowed (default if absent), 1 allowed
• import_map – Specifies the import translation map to be used. This maps from user field

names to Tethys names. For Excel spreadsheets only, this can also be specified by
adding the text Parser to the first row of any column on the MetaData sheet and writing
the import map name in row two of the same column.

• species_map – Specifies a translation map between local abbreviations and Latin names.
As with import_map, Excel files can embed this in a column called SpeciesAbbreviation
on the MetaData sheet with the map name underneath it. Collections that do not report
species or that use taxonomic serial numbers directly need not worry about this variable.

Attachments
• data – The document file that is to be added. Mimetype must be specified.
• Attachment – File that is to be associated with this document, the mimetype should be

specified. Each attachment is expected to be referenced by name within the data.
Currently, attachments are only available for detections, and are typically used to show
an image (e.g. spectrogram) or a short clip of audio data. Attachment may be repeated.
If many files are to be added, they can be placed in a zip archive. Image files should be
in subfolder image and audio files in subfolder audio.

Resources that expect attachments will verify submissions and report any missing attachments.
This can be used as a strategy to avoid having to parse the document being submitted on the
client side. In our document submission client, we submit a document, check to see if missing
attachments are the only problem, and if they are prepare a new submission with the needed files.

 Tethys Web Services 5

This does require the document to be transmitted twice, but saves the additional burden of
writing parsing tools for anything but the XML that is returned from the server.

POST ODBC

Open database connectivity (ODBC) is designed to allow data interchange between multiple
formats and ODBC libraries let Tethys import data from a wide variety of sources. See the data
import section of Tethys for details.

The ODBC method is similar to the add method. Data added by ODBC can either take the form
of a file that is transmitted to the Tethys server, or instructions to access a network resource.
Both methods share the following variables and body parts:

• import_map – as above
• species_map – as above
• overwrite – as above
• Attachment – as above

ODBC file submission expects a data file attachment as in the add method. The ODBC
connection string will be automatically determined for supported types (Excel, XML, CSV,
Access). See the Tethys manual for details.

Network submissions expect a ConnectionString parameter that specifies how the data source is
to be opened.

When connecting to databases, it is common to import multiple documents at once (e.g. many
deployments stored in a separate database). Document names will be automatically generated
for each instance. As the number of documents may decrease from one database read to another
(e.g. somebody deleted records), it is not recommended to use the overwrite parameter when
reading database records. Rather, clear the collection (or at least documents derived from
database records within the collection), then import the database.

POST import
Import is a new post interface designed to replace POST add and POST ODBC. It is
currently under development and not yet available.

POST expects a series of multipart bodies.

• specification – File containing XML that specifies the how data will be formatted:
<?xml version="1.0" encoding="UTF-8"?>
<import>
 <!-- Name that will be used for the associated XML document.
 If more than one document is generated, sequential numbers
 will be assigned, e.g. name1, name2, ...
 If absent, basename of first source will be used, e.g.
 if source is SOCAL32M-HF-SBP.xlsx, use SOCAL32M-HF-SBP.
 -->
 <docname>name</docname>
 <!-- Replace an existing document? -->
 <overwrite>true|false</overwrite>
 <!-- For documents that refer to species, how are species

 Tethys Web Services 6

 declared:
 TSN - ITIS taxonomic serial number (default if absent)
 Latin - scientific name of taxon
 abbreviation map name - Name of mapping in collection
 SpeciesAbbreviations
 -->
 <species_map>TSN</species_map>
 <sources>
 <source>
 <!-- What is being sent?
 file - A file in the multipart body attachment. It is
 assumed that the file type can be derived from the file
 extension and an appropriate ODBC connection string will
 be generated by the server.
 resource - A resource accessible by ODBC on the remote
 server.
 -->
 <type>file|resource</type>
 <!-- The name is the form name -->
 <name>sourcename</name>
 <!-- ODBC connection string.
 Optional for type file. If specified, remote system
 will not attempt to guess the connection string.
 Required for type resource.
 -->
 <connectionstring></connectionstring>
 </source>
 <!-- Repeat source as needed.
 Name elements must have unique values -->
 </sources>
</import>

• SourceFiles – One attachment for each file source using the sourcenames. Mimetype
must be specified. Example: <name>boobear.xls</name> would expect a boobear.xls
bodypart.

• Attachment – File that is to be associated with this document, the mimetype should be
specified. Attachments may only be specified when a single document is being added.
Each attachment is expected to be referenced by name within the data. Multiple
attachments may be handled in one of two ways:

o Repeat Attachment label. Some clients do not allow this and Attachment1,
Attachment2, … is also acceptable.

o Create a zip archive of file attachments and attach it. Filepaths must match the
references.

Currently, attachments are only available for detection documents, and are typically
used to show an image (e.g. spectrogram) or a short clip of audio data. Resources that
expect attachments will verify submissions and report any missing attachments. This
can be used as a strategy to avoid having to parse the document being submitted on the
client side. In our document submission client, we submit a document, check to see if
missing attachments are the only problem, and if they are prepare a new submission with
the needed files. This requires the document to be transmitted twice, but saves the
additional burden of writing parsing tools for anything but the XML that is returned
from the server.

Important notes for disaster recovery. When only simple files (comma separated values,
spreadsheets, xml) are sent, the source documents will be saved on the server, and the server’s

 Tethys Web Services 7

rebuild commands will be able to reconstruct the database if it is lost or corrupted. When more
complicated resources are used (e.g. a database), source documents are not stored as multiple
snapshots of a database are neither practical nor desirable.

POST rebuild

This method is used to rebuild a method from the source data that was submitted to the Tethys
server. This is primarily used for disaster recovery.

Note that this does not include database records. We do not store these as we assume that users
backup their databases and can simply re-run a query. Two variables can be passed to this
resource method:

• clear: 0 – Do not clear before rebuilding (default), 1 – clear before rebuilding.
• update: 0 – Only update if a document does not exist (default), 1 – Always update.

Collection rebuild jobs can be quite long when there is a large database. As a consequence, a
batch log identifier is assigned and returned as the result of the operation. To check the result of
a rebuild, access the BatchLogs resource.

DELETE – Deletion of documents
Documents may be deleted by invoking the DELETE method on a collection. A mandatory
keyword argument DocID must be used, which has the same format as for the GET method. To
remove all documents, the special DocID <*clear*> should be used. Note that this is
irreversible.

Attach Resource

The attach resource is used for retrieving attachments associated with collections via a GET
operation. It uses a path argument to specify the attachment. The first element of the path is the
collection resource (e.g. Detections) followed by the document identifier which is usually
composed of the basename of the file that was submitted. The attachment is specified with a
keyword argument indicating the attachment type and its name. Currently the only valid
attachments are Image and Audio.

Example: If image UknownPhenom.jpg was submitted with an Excel spreadsheet
ALEUT02BD_MF_MFAOrca_ajc.xls, one would retrieve the image using a GET on URL:

http://localhost:9779//Attach/Detections/ALEUT02BD_MF_MFAOrca_ajc?Image=UnknownPh
enom.jpg

BatchLogs Resource

 Tethys Web Services 8

BatchLogs are used by operations that may take longer than a client can be expected to wait.
Instead, an identifier is returned to the user and this is used as the path for a BatchLogs GET
request.

Example:
http://localhost:9779//BatchLogs/DetectionsRebuildX32J97.log

Tethys Resource
The Tethys resource is used for controlling the Tethys server itself.

.

Get
The following GET operations are allowed on the Tethys resource:

Tethys/ping – Returns an XML document if the server can respond:
<Tethys>

<ping>alive</ping>
</Tethys>

Tethys/performance_monitor – Reports status of the query performance monitor (on|off)

<Tethys>
<performance_monitor>on|off</performance_monitor>

</Tethys>

Put
Several Put commands are allowed on the Tethys resource:

Tethys/shutdown – Exit the server cleanly.
Tethys/checkpoint – Create a checkpoint in the transaction journaling system. This should be

done preferably before backing up or moving the database. Tethys will automatically do
this anytime the server is restarted.

Tethys/performance_monitor/ACTION – Set the performance monitor state where ACTION
is:
on – Turns performance monitor on if it is not already on.
off – Turns off performance monitor if not already off
clear – Resets the performance monitor counts. If it is off, performance monitor is turned

on.

Example using curl URL tool: curl -X get http://localhost:9779//Tethys/ping . Graphical user
interfaces are available in tools like insomnia and postman.

References

 Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, The University of CA, Irvine, Irvine, CA.

http://localhost:9779/Tethys/ping
https://insomnia.rest/
https://www.getpostman.com/

 Tethys Web Services 9

	Introduction
	XQuery Resource
	POST – Run database query

	Collection Resources
	GET – Retrieval of documents
	POST – Adding/changing documents
	POST add
	POST ODBC
	POST import
	POST rebuild

	DELETE – Deletion of documents

	Attach Resource
	BatchLogs Resource
	Tethys Resource
	Get
	Put

	References

