
Tethys Matlab Interface Cookbook

Tethys, Antioch mosaic, 3rd century from Baltimore Museum of Art

Table of Contents
1 Read me first .. 2

1.1 Let Matlab know how to find the Tethys code... 2
1.2 Set up a query handle object .. 2
1.3 IMPORTANT CHANGE as of Tethys 2.5 .. 3

2 Change how species are represented. .. 3
3 Find all projects in the database .. 4
4 List all species for which we have effort at a given site/project/etc. in our database .. 5
5 Find all deployments in a given latitude range .. 7
6 What is the effort for a specific deployment?... 8
7 Find detections for a given date and time range .. 10
8 Which time periods have calls from a particular species? .. 10
9 How to find day and night, and make a diel plot for a selected time period 12
10 How to find lunar illumination, and make a plot for a selected time period 16
11 Find an environmental data set .. 19
12 Pull in data from ERDDAP for a specific spatial location and/or time 22

13 How to add a new file to the Tethys database ... 25

1 Read me first

This document provides examples of common tasks using the Matlab interface to Tethys.
In many cases, the reader will wish to provide parameters relevant to their own data, our
convention is to highlight these values.

Before we get started, there are two important things that you must do:

1.1 Let Matlab know how to find the Tethys code
The Matlab client can be used to add data to the database and to use the Tethys

methods for querying the database. The installer will have copied several files to the
client-matlab directory which is located in the Tethys/matlab-client relative to the root
folder. For “Just me” (non-administrative installs), this is relative to your account
directory, which is usually c:\Users\YourLoginName. For “All users” (administrative
installs), this is usually in C:\Program Files\Tethys. If you or the person who installed
Tethys chose a different location, you will need to modify appropriately.
These are collected into subfolders: db, db\c and vis. The functions under db are related
to accessing the database while the functions in the vis directory provide support for
visualizing data.

Once Matlab has started, add the db, db\c and vis directories to your path. This can be
done using Matlab’s pathtool or addpath commands. The pathtool command allows you
to save the path for the next time you start Matlab. Alternatively, addpath commands can
be put in the startup.m file which is executed when Matlab starts. See the Matlab
documentation for details.

1.2 Set up a query handle object
All calls that interact with the Tethys database require a query handle object to be passed
as the first argument. If done at a command prompt, the handle is valid for the life of the
Matlab session (unless variables are cleared). In a function, the handle is valid for as
long as the function executes. For all of these examples, the Tethys database should be
started and you will need to know the machine on which it is running.

%
% Set up a query handler.
% This is passed to all Tethys functions that query the database
% and lets the functions know where the server is and defines
% the communication protocol. See the Tethys manual for details.
%
% for use with default server
query_h = dbInit();

Subsequent examples assume that a query handle has been set up and it has the name
query_h, although any variable name is fine as long as it is used consistently. If you wish
to use a server that does not match the name that you used during the installation process,
use:

% for use with specified server use the line below
% query_h = dbInit('Server', 'yourserverName');

1.3 IMPORTANT CHANGE as of Tethys 2.5
Users of Tethys prior to 2.5 will notice a change in how results are returned. Some
values in Tethys can occur more than once. For example when recording call types that
occurred in a 15 minute bin, one might want to report both A and B calls for blue whales.
In the past, if only one call was reported, the field name would contain the string, and if
more than one call was reported, a cell array would be returned. This meant that
sometimes one would reference the data as “Call”, and other times as “Call{1}” and
“Call{2}”. This complicated programming logic. As a consequence, all values in the
Matlab client are now returned as cell arrays.

In Tethys 2.5, the ERDDAP server is changed from coastwatch.pfeg.noaa.gov to
upwell.pfeg.noaa.gov which maintains a more comprehensive NOAA wide catalog.

2 Change how species are represented.

Tethys uses Latin species names by default. Many organizations use abbreviations such
as “Lo” or “Lobl” for Pacific white-sided dolphin (Lagenorhynchus obliquidens). The
dbSeciesFmt command allows one to specify how names are written in the input to
Tethys functions and how they are returned in the output. Like the dbInit function, this
need only be called once per Matlab session. Before using dbSpeciesFmt, we will find
out valid sets of abbreviations.

% We can use the query handler’s QueryTethys function to find the
% valid sets of abbreviations. (This is an actual query to the XML
% database that does not use Matlab functions as an intermediary,
% see the full manual for details on XQuery to learn more including
% details on namespaces (the ty: which identifies that we are using
% Tethys schema:
query_h.QueryTethys(...
 'collection("SpeciesAbbreviations")/ty:Abbreviations/Name')

ans =

<Name>NOAA.NMFS.v1</Name>
<Name>SIO.SWAL.v1</Name>

We can use another query to see the NMFS abbreviations:

query_h.QueryTethys(...

'collection("SpeciesAbbreviations")/ty:Abbreviations[Name="NOAA.N
MFS.v1"]')

ans =
<te:Abbreviations xmlns:te="http://tethys.sdsu.edu/schema/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://tethys.sdsu.edu/schema/1.0 tethys.xsd">
<Name>NOAA.NMFS.v1</Name>
<Map>
 <completename>Balaenoptera borealis</completename>
 <coding>Bb</coding>
</Map>
<Map>
 <completename>Balaenoptera brydei</completename>
 <coding>Be</coding>
</Map>
<Map>
 <completename>Balaenoptera musculus</completename>
 <coding>Bm</coding>
</Map>
<Map>
 <completename>Balaenoptera physalus</completename>
 <coding>Bp</coding>
</Map>
… many more deleted …
</te:Abbreviations>

Here, we will set both the input (the names we provide to the system) and the output to
use version 1 of the NOAA National Marine Fisheries Services abbreviations.

dbSpeciesFmt('Input', 'Abbrev', 'NOAA.NMFS.v1');
dbSpeciesFmt('Output', 'Abbrev', 'NOAA.NMFS.v1');

3 Find all projects in the database

%
% Set up a query handler.
% This is passed to all Tethys functions that query the database
% and lets the functions know where the server is and defines
% the communication protocol. See the Tethys manual for details.
%
% for use with default server
query_h = dbInit();
% for use with specified server use the line below
% query_h = dbInit('Server', 'yourserverName');
%
% Request all of the deployments
% Additional arguments could be used to restrict
% to a specific latitude range, etc.
% Note: Queries can be made using a single value ('Site', 'M') or using
% a list ('Site', {'M', 'N'}) as desired.
%

DeploymentInfo = dbDeploymentInfo(query_h);

RESULTS

% use unique in Matlab to return just the unique results of
% your query
% the output of dbDeploymentInfo
tmp = size(unique({DeploymentInfo.Project}));
for idx = 1:tmp(2)
fprintf('%s %s\n',char(unique({DeploymentInfo(idx).Project})))
end

Aleut CINMS

4 List all species for which we have effort at a given
site/project/etc. in our database

% Set up a query handler.
% This is passed to all Tethys functions that query the database
% and lets the functions know where the server is and defines
% the communication protocol. See the Tethys manual for details.
%
% for use with default server
query_h = dbInit();
% for use with specified server use the line below
% query_h = dbInit('Server', 'yourserverName');
%
% Request effort for a given site in the database
% Additional arguments could be used to restrict to a specific
% time, geographic location, species, etc.
% Type help dbGetEffort for details, e.g. add argument:
% 'Site', 'SiteName'
% to restrict to a specific site.
%
% A two column matrix effort is returned where each row contains
% a Matlab serial date (datenum) that represents the start and end
% of the effort. The function datestr can be used to display the
% starts and ends in human readable format.
% For each row in effort, the details structure contains information
% about the type of effort.

[effort, details] = dbGetEffort(query_h, 'Project', 'ALEUT');

RESULTS

>> whos
 Name Size Bytes Class Attributes

 details 1x1 12464 struct
 effort 1x2 16 double
 query_h 1x1 dbxml.Queries

Using datestr converts the serial dates from effort into an easily interpretable
format.

%
for idx=1:size(effort, 1);
 fprintf('%s %s\n', datestr(effort(idx,1)),datestr(effort(idx,2)))
end
%

27-Aug-2010 26-May-2011 08:07:00

The details structure array contains information from each of the XML documents
that describes the effort. This includes start and end times, and an optional
description. The DataSource structure contains the project, site, and deployment
identifier for each deployment, which can be used to obtain additional information
about a deployment with the dbDeploymentInfo() function. Algorithm contains the
detection method, software, version, and parameters information. UserID is
identifies the person who prepared the data. Finally, the Kind cell array contains
details about what types of calls or events are being logged by this effort. This
includes a species identifier a call type, and the level of detail in reporting which we
call granularity. Granularity can be reported as binned (presence per specified time
period), call, or acoustic encounter (beginning and end of a group of calls of the
specified type).

Note that for the text values, or strings, we use a curly bracket notation to access
them. In some cases, there may be more than one value (although not in this
example), so in general the strings are formed in a format that supports multiple
values. These are called cell arrays, see the Matlab documentation if you wish more
information about cell array structures.

%
% List the species and calls for which there was effort for the
% query we just executed. As we wish to print the call subtype
% and a possible group associated with a species (or other taxonomic
% designation), the loop is a little more complicated

for eidx = 1:length(details) % For each detection effort
 % Loop through the kinds of effort and display them.

 for kidx = 1:length(details(eidx).Kind)
 try
 % not all calls have subtypes
 subtype = details(eidx).Kind(kidx).Parameters.Subtype{1};
 catch
 subtype = '';
 end
 try
 % Not all species descriptors have associated groups,
 % we currently use this to distinguish between groups
 % of beaked whale echolocation signals that we can
 % distinguish but not link to a specific species.
 group = details(eidx).Kind(kidx).SpeciesID_attr.Group{1};
 catch
 group = '';
 end
 fprintf('%d: %s %s - call: %s %s granularity %s\n', ...

eidx, details(eidx).Kind(kidx).SpeciesID{1},
group, ...
details(eidx).Kind(kidx).Call{1}, subtype, ...

 details(eidx).Kind(kidx).Granularity{1});
 end
end
%

Result:

1: Human - call: Active Sonar MFA<5kHz granularity encounter
1: Human - call: Active Sonar Echosounder granularity encounter
1: Killer Whale - call: Whistles granularity encounter

5 Find all deployments in a given latitude range

Often studies are limited to specific geographic areas. One must be
able to search for all existing data from a specific region of the
earth. In this case, querying the deployment information in the Tethys
database can provide a list of deployments for a given range of
Latitude and Longitude.

%
% Set up a query handler.
% This is passed to all Tethys functions that query the database
% and lets the functions know where the server is and defines
% the communication protocol. See the Tethys manual for details.
%
% for use with default server
query_h = dbInit();
% for use with specified server use the line below
% query_h = dbInit('Server', 'yourserverName');
%

deployments = dbDeploymentInfo(query_h,'DeploymentDetails/Latitude',
{'>', 45},'DeploymentDetails/Latitude',{'<', 60});

RESULTS

To see a list of the deployments that meet the query criteria without
repeating sites, use the “unique” command in Matlab.

sites = vertcat(deployments.Site);
sites_unq = unique(sites)
fprintf('%s ', sites_unq{:})

BD

6 What is the effort for a specific deployment?
This example is very similar to the previous one, except that we are further limiting our
search.

%
% Set the parameters for the data search.
% This example uses project, deployment, and site. Any parameter for
% an attribute of the data can be used for the data search.
% It is important to input the parameters in the correct format.
% For example, project is a string as indicated by the single quotes.
% deployment is numeric, and has no quotes.
project = 'ALEUT';
deployment = 2;
%
% Find the effort for the data parameters using dbGetEffort.m
% Effort is a matrix of Matlab serial dates containing the start and
% end times in each row.
% An array called details contains the species in the format
% set by dbSpeciesFmt
[effort details] = dbGetEffort(query_h, 'Project', project, ...
 'Deployment', deployment);
%

RESULTS

Example output:

>> whos
 Name Size Bytes Class Attributes

 deployment 1x1 8 double
 details 1x1 12420 struct
 effort 1x2 16 double
 eidx 1x1 8 double

 group 0x0 0 char
 idx 1x1 8 double
 kidx 1x1 8 double
 project 1x5 10 char
 query_h 1x1 dbxml.Queries
 subtype 0x0 0 char

The details structure array contains information from the XML document that
describes the effort, start and end times, and an optional description. The
DataSource structure contains the project, site, and deployment identifier for each
deployment. Algorithm contains the detection method, software, version, and
parameters information. UserID is identifies the person who prepared the data.
Finally, the Kind cell array contains details about what types of calls or events are
being logged by this effort. This includes a species identifier a call type, and the
level of detail in reporting which we call granularity. Granularity can be reported as
binned (presence per specified time period), call, or acoustic encounter (beginning
and end of a group of calls of the specified type).

>> details(1)

 XML_Document: {'dbxml:///Detections/ALEUT02BD_MF_MFAOrca_ajc'}
 Start: {[2010 8 27 0 0 0]}
 End: {[2011 5 26 8 7 0]}
 Description: {''}
 DataSource: [1×1 struct]
 Algorithm: [1×1 struct]
 UserID: {'ACummins'}
 Kind: [1×3 struct]

% Example of examining the kinds of effort conducted
>> tmp = details(1).Kind;
 for idx = 1:length(tmp)
 fprintf('%d: %s - call: %s granularity %s\n', idx, ...
 tmp(idx).SpeciesID{1}, tmp(idx).Call{1}, tmp(idx).Granularity{1});
 end

1: Homo sapiens - call: Active Sonar granularity encounter
2: Homo sapiens - call: Active Sonar granularity encounter
3: Orcinus orca - call: Whistles granularity encounter

Caveats: Sometimes, there are multiple efforts for the same species. As an example,
running two different detectors for the same species can result in duplicate effort. When
performing analyses on data, be very careful that you don’t double count. When
querying effort (or detections), you can always specify queries for a specific type of
effort (see the function’s help).

7 Find detections for a given date and time range

%
% Set up a query handler.
% This is passed to all Tethys functions that query the database
% and lets the functions know where the server is and defines
% the communication protocol. See the Tethys manual for details.
%
% for use with default server
query_h = dbInit();
% for use with specified server use the line below
% query_h = dbInit('Server', 'yourserverName');
%
% Request all of the detections for a given date and
% time range in the database for toothed whales
% Additional arguments could be used to restrict
% to a specific species, etc.
%

detections = dbGetDetections(query_h, 'SpeciesID', 'UO', ...
 'Effort/Start',{'>', '2001-10-17T19:09:00Z'}, ...
 'Effort/End',{'<', '2009-05-19T00:00:00Z'});

RESULTS

dates = dbSerialDateToISO8601(detections);

dates(1:5,:) % Show first 5 starts and ends

 '2008-10-15T02:21:15Z' '2008-10-15T03:07:30Z'
 '2008-10-15T03:18:45Z' '2008-10-15T03:20:00Z'
 '2008-10-15T05:52:30Z' '2008-10-15T05:53:45Z'
 '2008-10-15T06:06:15Z' '2008-10-15T06:07:30Z'
 '2008-10-15T06:10:00Z' '2008-10-15T06:11:15Z'

8 Which time periods have calls from a particular species?

%
% We assume the following have been called
% See example 2
% dbSpeciesFmt('Input', 'Abbrev', 'NOAA.NMFS.v1');
% dbSpeciesFmt('Output', 'Abbrev', 'NOAA.NMFS.v1');
%
% Use dbGetDetections() to find all Killer whale detections
% in the database. Killer whales are abbreviated Oo (Orcinus
% orca) in the NOAA.NMFS.v1 abbreviation map.
[timestamps, Endp] = dbGetDetections(query_h,'SpeciesID', 'Oo');

The variable timestamps contains one or two columns depending upon whether the effort
is for binned intervals (single column giving some time during the interval) or finding
calls or encounters (start and end columns). If a query returns information that requires
both single and double columns, the optional second output variable (Endp in this
example), contains zeros where no end time was specified and ones otherwise.

% The output, timestamps, is in Matlab serial date format.
% We will convert them to ISO8601 format: YYYY-MM-DDTHH:MM:SSZ
%
dates = dbSerialDateToISO8601(timestamps);

RESULTS
 Name Size Bytes Class
Attributes

 Endp 0x0 0 double
 dates 154x2 46816 cell
 query_h 1x1 dbxml.Queries
 timestamps 154x2 2464 double

9 How to find day and night, and make a diel plot for a selected
time period

Scenario A: The time period and coordinates are set explicitly. These are usually
derived from other queries, see scenario B.

%
% Assume using NOAA.NMFS.v1 (see example 2)

% Set the parameters for the data search.
% Choose the start (Time1) and
% end (Time2) times and then convert them
Time1 = '10-Jan-2011 00:00:22';
Time2 = '27-Feb-2011 15:00:22';
starttime = datenum(Time1); endtime = datenum(Time2);
%
% Set the Latitude and Longitude
% as numbers, not a string (near the Aleutian islands)
Latitude = 52.7234; % + for north, - for south
Longitude = 174.7654; % degrees east
% Determine when the sun is down between start and end times
night = dbDiel(query_h, Latitude, Longitude, starttime, endtime);
%

RESULTS
dbDiel returns the times for sunset and sunrise at the specified coordinates in matlab
serial dates.

>> whos night
 Name Size Bytes Class Attributes
 night 48x2 32 double

%
for idx=1:size(night, 1);
 fprintf('%s %s\n', datestr(night(idx,1)), datestr(night(idx,2)))
end
%
10-Jan-2011 03:07:22 10-Jan-2011 19:11:22
11-Jan-2011 03:09:22 11-Jan-2011 19:13:22
12-Jan-2011 03:11:22 12-Jan-2011 19:10:22
13-Jan-2011 03:13:22 13-Jan-2011 19:07:22
...
23-Feb-2011 04:30:22 23-Feb-2011 18:04:22
24-Feb-2011 04:32:22 24-Feb-2011 18:01:22
25-Feb-2011 04:34:22 25-Feb-2011 17:58:22
26-Feb-2011 04:36:22 26-Feb-2011 17:55:22

If a plot is desired, visPresence() is provided in the Tethys matlab functions.

% Plot in local time.
% All times in the database are in UTC, the offset allows
% for plots in local time
UTCOffset = -9;
%
%
% See the Tethys manual or type
% help visPresence in Matlab for more information
% on using visPresence.m
nightH = visPresence(night, 'Color', 'black', 'LineStyle',...
 'none', 'Transparency', .15,'Resolution_m', 1/60, ...
 'DateRange',[starttime, endtime],'UTCOffset', UTCOffset);

Scenario B:
Plot detections with day/night shown and position and time derived from the
deployment(s) across which we are querying.

project = 'ALEUT';
deployment = 2;
species = 'Oo'; % NOAA.NMFS.v1 – Killer whale (Orcinus orca)
%
%Find the times of the detections from the query parameters using
dbGetDetections.m
detections = dbGetDetections(query_h, 'Project', project, ...
 'Deployment', deployment,'SpeciesID', species);
%
% Find first and last detection time from serial dates
starttime = min(detections(:, 1));
endtime = max(detections(:, 2));
%
% Query for deployment coordinates
%
%

% if coordinates are in your deployment information,
% these can be queried as in the line below
sensor = dbDeploymentInfo(query_h, 'Project', ...
 project,'DeploymentID', deployment);
%
% Determine when the sun is down between start and end times
% for the Latitude and Longitude
night = dbDiel(query_h, sensor(1).DeploymentDetails.Latitude{1}, ...
 sensor(1).DeploymentDetails.Longitude{1}, starttime, endtime);
%
% Set the UTC offset for the plot.
% All times in the database are in UTC, the offset allows
% for plots in local time
UTCOffset = -9;
%

% make a plot of night times
% See the Tethys manual or type
% help visPresence in Matlab for more information
% on using visPresence.m
nightH = visPresence(night, 'Color', 'black', 'LineStyle',...
 'none', 'Transparency', .15,'Resolution_m', 1/60, ...
 'DateRange',[starttime, endtime],'UTCOffset', UTCOffset);

%
%
% add detections of selectes species to plot using visPresence.m
speciesH = visPresence(detections, 'Color', 'b', ...
 'Resolution_m', 5, 'UTCOffset', UTCOffset);
%

RESULTS

10 How to find lunar illumination, and make a plot for a selected
time period

Scenario A: The time period and coordinates are set explicitly
%
% Set the parameters for the data search.
% Choose the start (Time1) and
% end (Time2) times and then convert them
Time1 = '10-Jan-2011 00:00:22';
Time2 = '27-Feb-2011 15:00:22';
starttime = datenum(Time1); endtime = datenum(Time2);
%
% Set the Latitude and Longitude
% as numbers, not string
Latitude = 52.7234;
Longitude = 174.7654;
%
% Set the time interval over which we will check.
% Interval minutes must evenly divide 24 hours, and must be no
% more than 30 m.
interval = 30;
%
% Set the getDaylight flag; false for no returns in daylight
getDaylight = false;
%
% Use dbGetLunarIllumination to get moon illumination
% returns serial date in column 1, and percent lunar illumination in 2
illu = dbGetLunarIllumination(query_h, Latitude, Longitude,...
 starttime,endtime, interval, 'getDaylight', getDaylight);
%

RESULTS

%
for idx=1:size(illu, 1);
 fprintf('%s percent illumination: %f\n',...
 datestr(illu(idx,1)),(illu(idx,2)))
end
%
10-Jan-2011 04:30:22 percent illumination: 28.883000
10-Jan-2011 05:30:22 percent illumination: 29.140000
10-Jan-2011 06:00:22 percent illumination: 29.271000
10-Jan-2011 06:30:22 percent illumination: 29.403000
10-Jan-2011 07:00:22 percent illumination: 29.539000
10-Jan-2011 07:30:22 percent illumination: 29.679000
10-Jan-2011 08:00:22 percent illumination: 29.824000
...
26-Feb-2011 17:00:22 percent illumination: 31.945000
26-Feb-2011 17:30:22 percent illumination: 31.792000
26-Feb-2011 18:00:22 percent illumination: 31.644000
26-Feb-2011 18:30:22 percent illumination: 31.500000

Scenario B:
Plot detections with day/night and lunar illumination shown and position and time
derived from the deployment(s) across which we are querying.

% Set the parameters for the data search using the output of a query
% Query parameters
project = 'ALEUT';
deployment = 2;
species = 'Oo';
%
% Find the times of the detections from the query parameters
% using dbGetDetections.m
detections = dbGetDetections(query_h, 'Project', project, ...
 'Deployment', deployment,'SpeciesID', species);
%
% Find start and end times
% times should be in serial dates
starttime = min(detections(:, 1));
endtime = max(detections(:, 2));
%

% Pull in coordinates from deployment information
sensor = dbDeploymentInfo(query_h, 'Project', ...
 project,'DeploymentID', deployment);
Lat = sensor.DeploymentDetails.Latitude;
Long = sensor.DeploymentDetails.Longitude;

% Set the time interval over which we will check.
% Interval minutes must evenly divide 24 hours, and must be no
% more than 30 m.
interval = 30;
%
% Set the getDaylight flag; false for no returns in daylight
getDaylight = false;
%
% Use dbGetLunarIllumination to get moon illumination
% returns serial date in column 1, and percent lunar illumination in 2
illu = dbGetLunarIllumination(query_h, Lat, Long,...
 starttime,endtime, interval, 'getDaylight', getDaylight);
%
% Set to zero for GMT, we'll plot in local time
UtcOffset = -9;
% Determine when the sun is down between start and end times
% for the Latitude and Longitude
night = dbDiel(query_h, Lat, Long, starttime, endtime);
%
% make a plot of night times
% See the Tethys manual or type
% help visPresence in Matlab for more information
% on using visPresence.m
nightH = visPresence(night, 'Color', 'black', 'LineStyle',...
 'none', 'Transparency', .15,'Resolution_m', 1/60, ...
 'DateRange',[starttime, endtime],'UTCOffset', UTCOffset);

%

% add detections of selectes species to plot using visPresence.m
speciesH = visPresence(detections, 'Color', 'b','Resolution_m', 5,
'UTCOffset', UTCOffset);
%
% add in the amount of lunar illumination to the plot
lunarH = visLunarIllumination(illu, 'UTCOffset', UtcOffset);
%
% add a legend for the species
legendH = legend(speciesH(1), species);
%

11 Find an environmental data set
Tethys is designed to interface with the NOAA Environmental Research Division Data
Access Program (ERDDAP). This allows users to choose any of the data sets hosted
through ERDDAP and bring the data into Matlab based on a Tethys query.

For more information on ERDDAP, see
http://coastwatch.pfeg.noaa.gov/erddap/index.html and the Tethys Manual section
3.4.6.3.

To explore available data, an Advanced Search is suggested. The ERDAP search page
can be found by going to the ERDAP server directly:
https://upwell.pfeg.noaa.gov/erddap/search/advanced.html, or by asking the Tethys
Matlab client to open the search page for you:

dbERDDAPSearch(query_h)

Users can search for available data using space and/or time limits. To search spatially,
users can input Latitude and Longitude limits, or click a box on a map of the earth. To
search for data collected within a specified time frame, the minumum and maximum time
can be added to the search.

For example, to find all of the available data for a region of the Pacific, the spatial limits
are set to the Latitude between 31 and 33 degrees, and Longitude between 239 and 241
degrees.

http://coastwatch.pfeg.noaa.gov/erddap/index.html
https://upwell.pfeg.noaa.gov/erddap/search/advanced.html

The results include 298 matching data sets. For more information about a specific data
set, there are columns with a summary of the metadata and complete background
information.

If the same geographic limits are used along with a minimum time of 2010-03-
01T00:00:00Z and a maximum time of 2011-01-01T00:00:00Z, 183 data sets are
returned.

The search can also be narrowed by keyword. To find a list of the keywords, see the
ERDDAP website to use the pull down menu in the advanced search. By typing “sst” in
the keyword drop-down, the return is 65 data sets.

Once a dataset is chosen, the DatasetID (from the last column on the right of the search
return) is used with dbERDDAP.m to download the selected data. In the next example,
the DatasetID is erdMWsstd8day. The variables and attributes for each dataset are
described in the first column of the returns. By clicking on the “data” under the first
column, a complete list of variables and of the dimensions needed for a query can be
viewed.

We see that the data are indexed by time, altitude, latitude, and longitude. The limits for
each index variable are provided, for example, at the time of this wriing these data are
available between July 2002 and January 2021. The spacing tells us that the data
measurements are taken about 26.5 h apart (due to the satellite’s orbital path) and there
are 6,137 of these nearly daily observations. There is data for exactly one altitude (sea
level), and we can see the geographic extent of the data as well as the spacing between
measurements (0.0125 degrees).

For the erdMWsstd8day data set, sst is the name of the variable. The required dimensions
are time, altitude, latitude, and longitude. When used with Matlab function dbERDDAP,
the DatasetID is followed by a question mark and then the variable.
In the next example, erdMWsstd8day?sst is used to download data.

Once you are familiar with ERDDAP search terms, you can specify them in
dbERDDAPSearch, separating each term by an ampersand (&). For example, the
Integrated Ocean Observing System (IOOS) maintains a set of data categories that
include terms such as bathymetry, co2, currents, dissolved_o2, ice_distribution, etc. We
can use ioos_category=bathmetry to search for bathymetry. ERDDAP’s standard_name
provides a wide set of variable names where spaces between words are replaced with
underscores. These are reasonably intuitive, e.g. sea_surface_temperature. More details
on these search terms can be found at any ERDDAP server, e.g. the NOAA GEO-IDE
UAF ERDDAP server; follow the search for dataset by category links.

https://upwell.pfeg.noaa.gov/erddap/index.html
https://upwell.pfeg.noaa.gov/erddap/index.html

As an example query, suppose we wished to search for sea surface temperature provided
by the National Centers for Environmental Information (NCEI). We would run the query:

 We would run the query:

dbERDDAPSearch(query_h, ...
 'keywords=sea_surface_temperature&institution=ncei')

For most users however, the easiest way to find data is to simply open ERDAPs search
site:
dbERDDAPSearch(query_h)

12 Pull in data from ERDDAP for a specific spatial location and/or
time

Suppose we wished to access a subset of the sea surface temperature (SST) dataset
identified in the previous section: erdMWsstd8day?sst . From the previous example, we
know that the SST data are indexed by time, altitude, latitude (degrees North) and
longitude (degrees East). We can use function dbERDDAP to pull in the data.

In this example, we will search for data on a small grid of the coast of southern California
on November 13th, 2012. We need to specify each axis. ERDAP requires a set of array
indices indicating the portion of the data set to retrieve. As there are four index variables,
there will be four sets of array indices []. Each array index must have the form

[start:stride:end]

where start is either an index number into the data or is specified in the units of measure,
e.g. a timestamp for a time axis. When referencing by unit, you must surround the value
by parentheses (). We indicated that we wanted to retrieve data from November 13th,
2012. We would specify this as follows using a standard time notation: YYY-MM-
DDTHH:MM:SSZ where Z indicates that the time is in UTC.

[(2012-11-13T00:00:00Z):1:(2012-11-13T00:00:00Z)]

Subsequent indices are handled similarly.

data = dbERDDAP(query_h, 'erdMWsstd8day?sst[(2012-11-
13T00:00:00Z):1:(2012-11-
13T00:00:00Z)][(0.0):1:(0.0)][(33.47):1:(33.59)][(240.7):1:(240.80)]');

RESULTS

The returned data is a structure that contains three fields:
data =

 struct with fields:

 Axes: [1×1 struct]
 Data: [1×1 struct]
 dims: [9 10 1 1]

• Axes – Description of the axes
• Data – A structure with the returned data.
• dims – Provides the dimensions of the data

The Axes structure contains fields that describe the data axes:

• names – An ordered cell array of the axes names indicating how the returned data
are organized, e.g. data.Axes.names{1} is 'longitude' with the remaining values
being latitude, altitude, and time.

• units – Cell array of measurement units for each axis. In this case: degrees_east,
degrees_north, m, and UTC.

• types – Cell array of data types for the axes units. Here, all units are doubles
except for the time measurements which are coded as serial dates (datenum).

• values – The value that corresponds to the axes. For example, to see the latitudes,
we would examine the 2nd cell entry:
>> data.Axes.values{2}

ans =

 33.4750 % first index into data along axis 2 corresponds to this latitude
 33.4875 % second index into data along axis 2 corresponds to this latitude
 33.5000 % and so on…
 33.5125
 33.5250
 33.5375
 33.5500
 33.5625
 33.5750
 33.5875

The dims field simply lists the dimensions of the axes.

The Data field contains the actual data and contains the following information:

• names – Cell array of variables returned. As we only requested SST,
data.Data.names{1} is 'sst'.

• units – Cell array indicating the unit of measurement for each variable name
(degree_C in this case).

• types – Cell array describing the data type for each value. Here, the data were
returned as type 'float'. Even though Matlab stores these as double precision
numbers, ERDAP stored them as single precision numbers. If numerical
precision to many digits is important to your research question, this may be
important to you.

• values – A cell array with one entry per variable returned. As we only requested
SST, values{1} contains a 9 x 10 matrix of doubles that corresponds to the
temperatures we requested.

The sst data can now be plotted using the mapping toolbox, or saved for use in other
software packages.

Here’s a more complex example that finds bathymetry in 400 km2 in the Southern
California Bight.

% dbERDDAP example
% Find bathymetry about a point.

% Center point degrees north, east
% This is in the Southern California Bight
center = [33.515 240.753];

range_km = 20; % defines square with width/height 2*range_km
try
 % Use mapping toolbox to convert to degrees
 delta_deg = km2deg(range_km);
catch e
 % mapping toobox unavailable, hardcode it
 % Note that this try catch block is only required to make
 % this example work even when someone does not have the
mapping
 % toolbox. We are simply setting delta_deg
 delta_deg = 0.1799;
 fprintf('No mapping toolbox, assuming %f km = %f deg', ...
 range_km, delta_deg);
end

% Compute extent around center
box = [center - delta_deg; center + delta_deg];

% Determine search criteria
geospec = sprintf('minLat=%f&maxLat=%f&minLon=%f&maxLon=%f',
box(:))];
criteria = ['ioos_category=bathymetry', '&', geospec];

% Running this query, we see that there are at least a half dozen
% bathymetry data sets. In this case, wee
dbERDDAPSearch(query_h, criteria);

% Looking at the results of the search, we see that there are
% a number of datasets that might meet our purposes. We settle
% on the San Diego, California Tsunami Forecast Grids for
% MOST Model:
% noaa_ngdc_ec9d_8632_6ca3 which has unevenly spaced data sampled
% approximately 0.017 degrees apart.
dataset = 'noaa_ngdc_ec9d_8632_6ca3';
geoind = sprintf('[(%f):1:(%f)][(%f):1:(%f)]', box(:));
data = dbERDDAP(query_h, sprintf('%s?bathy%s', dataset, geoind));

% The bathymetry data are in data.Data.values{1}

13 How to add a new file to the Tethys database

% Start a GUI for uploading files to the database
% for use with default server
dbSubmit();
% for use with specified server use the line below
% dbSubmit ('Server', 'yourserverName');
%

RESULTS

The first input is your server address, in many cases this will be your local host address
which can be written as http://127.0.0.1:9779.
Next choose the appropriate collection from the drop down. This includes Detections,
Deployments, Ensembles, Localizations, Source Maps and Species Abbreviations.

The third drop down is to indicate the appropriate source map. Source maps provide
directions on how data contained in your documents to be submitted are mapped to
Tethys when your data are not already in Tethys ready XML format.

If there is a source map listed in your input file (for example, a Detections Excel Sheet
under the Metadata tab would list the parser) you can choose “Embedded in data”. The
Source Map needs to be part of the Tethys server, if it is new, you will need to import the
Source Map first. When species identifiers are in the input data, select the species
abbreviation set when using your local set of abbreviations.

To select the file to be added to Tethys, there are several tabs available on the GUI.
To add an individual file from a network location, click on the “File import ” button and
navigate to the file to be added to Tethys. Click the “Submit to Tethys” button and your
document will be submitted, with confirmation or errors displayed in the message areas.
If you wish to overwrite an existing Tethys document, click the overwrite existing
checkbox. Otherwise, trying to submit a document twice will fail.

More details on the other tabs can be found in the Tethys manual. Briefly multiple
sources allows one to combine data from multiple files or data bases into one document.
The ODBC tab allows one to import data from databases and requires that the source map
contain database queries. ODBC allows for one to treat many types of data as if they
were a database. As an example, one can import Excel documents using this interface.

14 View attached images in a web browser

Many Detections include an audio file or image file which are attached when adding the
Detections to the Tethys database. One way to view an attached image is using the REST
server component of Tethys. First, the Tethys server needs to be running. In this
example, the server is running as localhost with port 9779.

Next, open a web browser such as Firefox. To view an image, type in the address using
the server location. Note that the document ID does not have the file type suffix (such as
.xls) but that the name of the image file does have the file type.

For attached images you will need the following information:

Server localhost
Port 9779
Collection Detections
Detections doc ID ALEUT02BD_MF_MFAOrca_ajc
Image name Other-ALEUT2BD-20101211T061447.jpg

http://localhost:9779//Attach/Detections/ALEUT02BD_MF_MFAOrca_ajc?Image=Other-ALEUT2BD-
20101211T061447.jpg

Results:

	1 Read me first
	1.1 Let Matlab know how to find the Tethys code
	1.2 Set up a query handle object
	1.3 IMPORTANT CHANGE as of Tethys 2.5

	2 Change how species are represented.
	3 Find all projects in the database
	4 List all species for which we have effort at a given site/project/etc. in our database
	5 Find all deployments in a given latitude range
	6 What is the effort for a specific deployment?
	7 Find detections for a given date and time range
	8 Which time periods have calls from a particular species?
	9 How to find day and night, and make a diel plot for a selected time period
	10 How to find lunar illumination, and make a plot for a selected time period
	11 Find an environmental data set
	12 Pull in data from ERDDAP for a specific spatial location and/or time
	13 How to add a new file to the Tethys database
	14 View attached images in a web browser

