
Using Secure Socket Layer with Tethys

Tethys, Antioch mosaic, 3rd century from Baltimore Museum of Art

Marie A. Roch, San Diego State University/Scripps Institution of Oceanography

Contents
Introduction .. 2

Certificate authority issued certificate ... 2

Self-Signed certificate ... 3

Generating key files and certificates... 3

Installing certificates ... 4

Certificates for Matlab .. 4

Certificates for Java ... 5

Certificates for other clients ... 6

Introduction
Tethys can be run over secure socket layer (SSL) which provides increased security by encrypting the
data stream and by verifying that the Tethys server a client is communicating with is the correct one.
Setting up Tethys for secure socket layer transport requires a certificate that is stored in the database
directory. Certificates are used to establish trust between computers in a network. Your system
administrator can help you obtain a certificate or you can create one on your own.

By far the easiest way to use a certificate is to have one issued by a certificate authority. If your
organization does not have a relationship with a certificate authority, you can purchase a certificate
from many vendors, but these vendors typically charge an annual sum. Consequently, many people
choose to issue self-signed certificates. These are certificates that an individual creates. The problem
with such certificates is that there is no way for other machines to automatically trust them. Steps must
then be taken to inform Tethys clients that the self-signed certificate is valid. We outline methods for
setting up Tethys to work with both types of certificates. Note that starting Tethys in secure socket
mode without having installed a certificate will cause the server to fail.

Certificates rely on a public-private key system. One party holds the private key which must be kept
secret and anyone else can have the public key. The pair of keys are used together to provide secure
encryption.

Certificate authority issued certificate
Obtain a certificate from your certificate issuing authority. This may be your organization which may
have a certificate authority for its domain, or could be an external certificate issuing authority that will
typically charge a service fee.

Copy your certificate and private/public keys files to the database with which they are to be used, e.g.
c:/Users/tethys/metadata. Start the server in secure socket mode. They must be named as follows:

 private/public keys → host.key
 certificate → host.crt

That is it – you are done!

Self-Signed certificate
There are a number of tools that can be used to generate self-signed certificates, we will use OpenSSL
(http://www.openssl.org/), a freely available secure socket library and management tool. OpenSSL is
bundled with most linux systems and can be downloaded as source code or a Windows binary at the
OpenSSL web site. The steps to execute in this section are assumed to be done at a command line
prompt and use a console font.

Note that there can be trust issues with self-signed certificates. Clients connecting to servers with self-
signed certificates usually either prompt users with warnings or simply deny service. Most operating
systems provide a mechanism for granting trust to such certificates, but you will likely need your
information technology staff’s assistance if you do not have administrative privileges on the machines
involved.

Generating key files and certificates
Our self-signed certificate will rely on a public/private key pair. We will be generating a 2048 bit key
using the RSA algorithm. These keys are stored in the privacy enhanced mail (PEM) format, a standard
for public key representation also used for secure electronic mail.

openssl genrsa -out host.key 2048

This generates the key file host.key that contains both the private and public keys.

Next we issue the certificate using a configuration file host.cnf that can be found in the
server/docs/examples folder relative to Tethys’s base install folder (usually c:\Program Files\Tethys or
c:\Program Files (x86)\Tethys for Windows systems). The host.cnf will have to be copied to the same
folder as your key file or the entire path to the configuration file should be specified.

$ openssl req -new -x509 -key host.key -out host.crt -days 1500 –config
host.cnf

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

http://www.openssl.org/

The following are prompts that should be answered with information relevant to your
organization
Country Name (2 letter code) [US]: <provide country code>
State or Province Name (full name) [CA]:<provide state/province>
Locality Name (eg, city) [San Diego]:<provide city>
Organization Name (eg, company) [San Diego State University]:<provide organization>
Organizational Unit Name (eg, section) []:<provide unit name>
localhost []:<provide host name, e.g. localhost, tethys.mydomain.org>

Installing certificates
The host.crt is your certificate, and host.key contains both your private and public keys. Both of these
should be copied to the base folder of your database, e.g. c:\Users\Tethys\metadata. The server will
look for both of these files when starting.

When the server accesses this certificate, the client needs to verify that the certificate is trusted. This
can be done in a variety of ways. Some clients may access the operating system’s certificate trust, in
which case the certificate can be stored there. Others may manage a private certificate trust, and the
certificate must be installed in the private trust.

Certificates for Matlab
Matlab comes with a version of Java. Even if you have Java already installed, Matlab will install its own
version of Java with the exception of certain versions of Apple’s MacOS. Once Tethys is installed and the
server is running in secure socket layer mode, the certificate can be installed with the following steps
typed at a Matlab prompt assuming that the environment has been configured for Tethys and you have
executed dbInit() (see Tethys documentation or the Matlab cookbook for setting up Matlab as a Tethys
client):

import dbxml.InstallCert % Make the install certificate class available

Request the server’s certificate. In this case, we will assume that the client and server are running on
the same machine, but in general we would want to substitute a more general server name (e.g.
tethys.your.org)

c = InstallCert('localhost:9779')

If the certificate has not yet been installed (it only need be installed once for as long as the certificate is
valid), you will see an error indicating that the client was unable to find a valid certification path. If not,
you will see a message that the certificate is trusted and you need not do anything more.

To install the certificate (if there was an error), request a list of valid certificates:

c.ShowChain()

 This will display all the certificates associated with the server (only one in our case). Although the data
will be different as this is for a specific host and private key, it should have the following format:

Server sent 1 certificate(s):
 0 Subject CN=localhost, OU=San Diego State University, L=San Diego, ST=CA, C=US
 Issuer CN=localhost, OU=San Diego State University, L=San Diego, ST=CA, C=US
 sha1 d6 69 f0 c1 c8 4e c5 50 be 1f 90 b6 08 9c 44 8e b6 d6 aa b6
 md5 42 31 4e 83 22 74 b0 38 6f b3 f4 ea 67 b4 95 c7

The first number associated with each certificate (0 in this case) is an index into the list of certificates.
To install the certificate 0, execute:

c.InstallIndex(0)

This will result in the creation of a file called jssecacerts in current folder. This contains all of the
certificates that were in the Java certificate trust and the newly installed certificate. We next have to
place this file in a location that Matlab will find it.

The Matlab function matlabroot will indicate where Matlab is installed. Matlab’s Java certificates are
located relative to this folder in sys\java\jre\win64\jre\lib\security (win64-->win32 for 32
bit systems). Begin my making a copy of the cacerts file. Then copy jssecacerts into this folder and
rename it cacerts.

Certificates for Java
Adding certificates for Java also uses the CertInst class, but has few steps. In this example, we will
assume that the current directory is writable, and that the Java client has been installed.

Open a command line window. Begin by setting a variable that references the root folder of the Tethys
Java client (modify for your installation, e.g. Program Files (x86) for 32 bit installs):

REM Do not use quotes around the path
set JCLIENT=c:\Program Files\Tethys\client-java\classes

Make sure that your current folder is one that is writable and that the Java virtual machine (java.exe) is
in your path. Then execute the following, substituting localhost:9779 with the name of your server and
the port it is running on (default 9779):

java -classpath %JCLIENT% dbxml/InstallCert localhost:9779

If the certificate is installed, you will see a message indicating that this is the case and there is nothing to
do. Otherwise an error will occur and you will be shown the certificates that were found in the same
format as outlined in the section for Matlab clients:

Server sent 1 certificate(s):
 0 Subject CN=localhost, OU=San Diego State University, L=San Diego, ST=CA, C=US
 Issuer CN=localhost, OU=San Diego State University, L=San Diego, ST=CA, C=US

 sha1 d6 69 f0 c1 c8 4e c5 50 be 1f 90 b6 08 9c 44 8e b6 d6 aa b6
 md5 42 31 4e 83 22 74 b0 38 6f b3 f4 ea 67 b4 95 c7

Next, you will be asked which certificate to import. In most cases, there will only be a single certificate
(certificate 0), so enter 0. A jssecacerts file will be created.

For the next step, you will need administrator rights on your machine or need to have an administrator
assist you. Navigate to the directory where Java stores it certifications. On Windows installations, this is
typically C:\Program Files\Java\jre7\lib\security (possibly Program Files (x86)). Rename the cacerts
file. Copy jssecacerts created earlier to cacerts.

Certificates for other clients
Many other clients are more forgiving, for example typing https://localhost:9779//Detections into
Internet Explorer gives you a warning that the certificate cannot be verified and then allows you to
proceed at your own risk, or even install the certificate.

https://localhost:9779/Detections

	Introduction
	Certificate authority issued certificate
	Self-Signed certificate
	Generating key files and certificates
	Installing certificates
	Certificates for Matlab
	Certificates for Java
	Certificates for other clients

