
Tethys Metadata Page 1

Tethys, Antioch mosaic, 3rd century from Baltimore Museum of Art
 http://tethys.sdsu.edu v 3.1

Marie A. Roch – San Diego State University
Jeff Cavner, Katie O’Laughlin, and David Cardoso – San Diego State University
Simone Baumann-Pickering, Heidi Batchelor, Sean Herbert, Ally Rice, and John A. Hildebrand – Scripps

Institution of Oceanography
Erin Oleson and Lisa Munger – NOAA PIFSC
Catherine Berchok – NOAA NWAFSC
Danielle Cholweiak, Denise Risch, and Sofie Van Parijs – NOAA NEFSC
Melissa Soldevilla – NOAA SESFSC

http://tethys.sdsu.edu/

Tethys Metadata Page 2

Table of Contents

1 Overview ... 6

2 Setup and Administration ... 6

2.1 Setup .. 6

2.1.1 Hardware and software requirements.. 6

2.1.2 Download Tethys ... 11

2.2 Start the server .. 14

2.2.1 Using a batch file ... 14

2.2.2 Using the command line ... 16

2.3 Shutdown the server ... 17

2.4 Run the server as a service .. 18

3 Using Tethys .. 19

3.1 Data organization in Tethys ... 20

3.1.1 Collections ... 20

3.1.2 Document structure .. 22

3.2 Adding data to Tethys .. 32

3.2.1 Source maps .. 33

3.2.2 Importing documents to Tethys .. 35

3.2.3 Updating existing documents ... 35

3.2.4 Viewing attached images in a web browser ... 35

3.3 Removing/modifying data ... 36

3.4 Query ... 36

3.4.1 Data Explorer ... 37

3.4.2 Web client ... 37

3.4.3 Java client .. 37

3.4.4 MATLAB client ... 40

3.4.5 Python client ... 42

3.4.6 XQuery ... 44

3.4.7 Case study: Northeast Fisheries Science Center Minke Boing analysis 50

Tethys Metadata Page 3

4 Maintenance ... 53

4.1 Checkpoints ... 53

4.2 Backups .. 53

4.3 Help! My database has fallen and cannot get up! .. 54

4.3.1 Server will not start / Server window disappears ... 54

4.3.2 Database is not responsive ... 54

4.3.3 Database is corrupted ... 54

5 Appendix: XML Schema Diagrams .. 55

5.1 Calibration ... 55

5.2 Deployment ... 58

5.3 Detections .. 65

5.4 Ensemble ... 70

5.5 Event .. 71

5.6 Localization .. 72

6 Appendix – BatchLogs ... 76

7 Appendix: Tethys.xq Module Functions.. 77

8 References .. 79

9 Licenses ... 79

9.1 Python .. 80

9.2 Berkeley DBXML .. 81

9.3 CherryPy Object oriented web framework ... 101

9.4 Libraries using the MIT License ... 102

Tethys Metadata Page 4

List of figures

Figure 1 – Office Database Connectivity: List of available ODBC drivers appears on the Drivers tab. In this
example, a driver for MySQL has been installed in addition to the Microsoft drivers that were added by
installing Office. .. 8
Figure 2 - File tab in Microsoft Word. We see that this version is click-to-run (arrow 2) and we will need
to install the Access ODBC driver. Clicking on About Word, it will show whether this is a 32- or 64-bit
version (Figure 3). ... 9
Figure 3 - About Word dialog. Note arrow pointing to information indicating this installation of Office is
64-bit. .. 9
Figure 4 – Windows dialog for system properties. ... 10
Figure 5 – Windows dialog for environmental variables. ... 10
Figure 6 - Sample windows firewall dialog (Windows 7) requesting the user to allow Python to access the
Tethys port. ... 15
Figure 7 – Command line interface once server is running. ... 15
Figure 8 – Installing Tethys as a service using Non-Sucking Service Manager (NSSM) 19
Figure 9 - The ERDDAP search web interface allows one to search for data by specifying multiple criteria.
 .. 29
Figure 10 - Row from an ERDDAP data search for sea surface temperature. .. 30
Figure 11 – ERDDAP Aqua Modis 8-day sea surface temperature composite. This dataset is accessed
using four dimensions: time, altitude, latitude, and longitude. Positioning the cursor (mouse pointer)
over any one of these will show the possible values and the resolution of the data. 31
Figure 15 – Detections document attachment viewed in a web browser. ... 36
Figure 16 Detection submission for MATLAB client Error! Bookmark not defined.
Figure 17 – Calibration schema for recording information about instrument calibration. Dark lines
indicate required elements; light lines indicate optional elements. .. 56
Figure 18 – MetadataInfo is a required element in the Calibration schema to provide details on who is
responsible for the calibration record. ... 57
Figure 19 – QualityAssurance is a required element in the Calibration schema to provide details on the
quality of the calibration. .. 57
Figure 20 – Process is an optional element in the Calibration schema to provide details of the calibration
process used. .. 58
Figure 21 – ResponsibleParty is an optional element in the Calibration schema to provide details on who
performed the calibration... 58
Figure 22 – Deployment schema for recording information about instrument deployments. Dark lines
indicate required elements; light lines indicate optional elements. .. 60
Figure 23 – The SamplingDetails element within the Deployment schema contain information about the
recordings on each channel during the deployment. ... 61
Figure 24 – The Data element within the Deployment schema contains information about the location of
the data from the deployment. .. 62

Tethys Metadata Page 5

Figure 25 – The DeploymentDetails element within the Deployment schema contains information about
where and when a deployment occurred. .. 63
Figure 26 – The Sensors element within the Deployment schema describes the types of sensors
associated with a deployment. ... 64
Figure 27 – The optional QualityAssurance element within the Deployment schema allows for the
inclusion of details about the quality assurance process. .. 65
Figure 28 – Detection schema for recording information about detections. Dark lines indicate required
elements; light lines indicate optional elements. ... 66
Figure 29 – The Effort element within the Detection schema captures the timespan and types of events
that were investigated. ... 67
Figure 30 – The OnEffort element within the Detection schema is where individual detections are
recorded. ... 69
Figure 31 – The Description element with the Detection schema allows for details on the detection
objectives and methods. ... 70
Figure 32 – Ensemble schema used to create logical groupings of instrument deployments. Dark lines
indicate required elements; light lines indicate optional elements. .. 71
Figure 33 – The ZeroPosition element in the Ensemble schema describes a point that localizations can
reference. .. 71
Figure 34 – Event schema used to record phenomena derived from other knowledge sources. Dark lines
indicate required elements; light lines indicate optional elements. .. 72
Figure 35 – The Localization schema is used to record localizations of sources from multiple instruments.
Dark lines indicate required elements; light lines indicate optional elements. ... 73
Figure 36 – The Effort element in the Localization schema includes information about when the
localization occurred. .. 74
Figure 37 – The Localization element within the Localization schema provides details about individual
localizations. ... 75
Figure 38 – The IntermediateData element within the Localization schema can be used to record
information about the localizations. ... 76

Tethys Metadata Page 6

1 Overview
Tethys is a temporal-spatial database for metadata related to acoustic recordings. The database is
intended to house metadata from marine mammal detection and localization studies, allowing the user
to perform meta-analyses or to aggregate data from many experimental efforts based on a common
attribute. This resulting database can then be queried based on time, space, or any desired attribute,
and the results can be integrated with external datasets such as NASA’s Ocean Color, lunar illumination,
etc. in a consistent manner. While Tethys is designed primarily for acoustic metadata from marine
mammals, the design is general enough to permit use in other areas as well.

Tethys provides a scientific workbench to the practitioner. Consequently, rather than providing a stand-
alone graphical interface, Tethys provides methods, or subroutines, that can be called from
programming environments that practitioners use to conduct their analysis. Currently, Tethys supports
MATLAB, Java, and Python. The R programming language will be included in the next major release.
These methods allow practitioners to access the metadata associated with a specific laboratory or
project. Additionally, the tools provide access to environmental data based on spatial location and
selected temporal boundaries from a wide variety of online sources.

To run Tethys, a Windows machine is required (porting to other platforms is possible with a little work).
To access Tethys from other machines, the network will need to permit communication between
machines. In most cases, this will require a modification of a machine’s firewall rules.

This manual is divided into several major parts: you need not read them all to use Tethys effectively.
Section 2 contains information about setting up and administering Tethys, while section 3 provides
information for practitioners who wish to use it. Users may wish to begin by reading about data
organization (section 3.1) which describes the different types of documents that Tethys can store, and
the section of the manual that is appropriate for the language that they will be using to conduct their
queries. Queries can either be written in the XQuery language (section 3.4) or the user can invoke
specialized functions that construct common queries. The richest set of common queries is available for
MATLAB (section 3.4.4), which also has a separate “cookbook” style manual (MatlabCookbook)
document.

2 Setup and Administration

2.1 Setup

2.1.1 Hardware and software requirements
Tethys is designed to be executed on a Microsoft Windows platform with a 64-bit version of the
Microsoft Windows operating system. The user will need a Windows machine to be used as the server1
for creating and housing the database. The same machine can be used for querying data and using the
associated Tethys methods or additional client machines can be used. It is recommended that there be

1 In this context, “server” means that Tethys will be providing services to other machines. The Windows Server
operating system is not required.

Tethys Metadata Page 7

ample disk space for the database and that plans be put in place for routine backup of the database. As
an example, in early 2023, the database used at the Scripps Whale Acoustics Lab contained over ten
million detections and used a bit over 34 GB of storage. Most of the space was used for the database
records themselves (24 GB). The remaining storage was used for archival records, sample audio/images
stored at analyst request, and stored queries used to accelerate processing.

2.1.1.1 Windows firewall
While not a Tethys utility, Windows firewall is a service that provides internet security. You may need to
configure Windows firewall to permit network traffic to and from your machine. A tutorial article by
Hoffman (2012) explains how to set up Windows firewall rules. The firewall can be configured to provide
more selective filtering, such as only allowing access from specific machines or subnetworks. Modifying
the firewall rules requires administrative privileges.

2.1.1.2 Microsoft ODBC installation for spreadsheet and database import
To import non-XML information into Tethys, you need to have the 64-bit version of Microsoft’s open
database connectivity (ODBC) driver installed. This will allow imports from Microsoft family products
(e.g., Access and Excel) and comma-separated value files. To support non-Microsoft databases,
additional vendor-specific ODBC interfaces may need to be installed (e.g., the MySQL driver for MySQL
databases). Note that you will need to ask your system administrator to install these drivers if you do
not have administrative privileges.

By default, ODBC drivers for Excel, Access, and comma-separated values files are not present on
Windows. If you have a 64-bit Microsoft Office 365 installed, you may have access. Some older versions
of Microsoft Office 365 do not support ODBC by other programs such as the Tethys server. You can
check if you have access by selecting the Start menu and searching for ODBC Data Sources (64 bit). Click
on the Drivers tab. If you have access, you should see sources for Microsoft Access and Excel (Figure 1).

http://www.howtogeek.com/112564/how-to-create-advanced-firewall-rules-in-the-windows-firewall/
https://dev.mysql.com/downloads/connector/odbc/

Tethys Metadata Page 8

Figure 1 – Office Database Connectivity: List of available ODBC drivers appears on the Drivers tab. In this example, a driver
for MySQL has been installed in addition to the Microsoft drivers that were added by installing Office.

If you do not have the Microsoft drivers, we recommend installing the freely available Microsoft Access
Database Engine, version 2016 or later, which is currently available here (Microsoft changes links
frequently, and you may need to search for it). See this Microsoft knowledge base article if you have any
problems.

Note that the 64-bit ODBC driver cannot be run when 32-bit versions of Office are installed. To
determine if a recent version of Office is 32- or 64-bit, open an office document (e.g., Word) then click
on the File icon on the ribbon, resulting in the following after you click on Account (arrow 1 below):

https://www.microsoft.com/en-us/download/details.aspx?id=54920
https://learn.microsoft.com/en-US/office/troubleshoot/access/cannot-use-odbc-or-oledb

Tethys Metadata Page 9

Figure 2 - File tab in Microsoft Word. We see that this version is click-to-run (arrow 2) and we will need to install the Access
ODBC driver. Clicking on About Word, it will show whether this is a 32- or 64-bit version (Figure 3).

Figure 3 - About Word dialog. Note arrow pointing to information indicating this installation of Office is 64-bit.

2.1.1.3 R installation for data export (optional)
If you want to export query results from The Tethys web client (http://your.server/Client) in R format,
download and install R (versions 4.2.1, 4.2.2, and 4.0 have been tested) on your server machine. The
following link provides details on that installation. Download R for Windows. Note: For Tethys to
automatically install required packages, you must have write permissions to the R library directory.
You can either install R locally in the account that will be running Tethys, change the R library directory
to be writable, or install the following library packages manually: stringi, R6, methods, XML, data.tree.

After you have installed R you will need to set an environment variable (R_HOME) to point to the
location where R has been installed. To set environment variables, click on the Windows Start button
and start typing View Advanced System Settings. Once selected, the System Properties window will
open.

https://cran.r-project.org/bin/windows/base/

Tethys Metadata Page 10

Figure 4 – Windows dialog for system properties.

Click on Environment Variables. A new window will show User and System variables. Add a new User
variable named R_HOME where the variable value is the path to the directory where R was installed.

Figure 5 – Windows dialog for environmental variables.

Tethys Metadata Page 11

Click OK and then click OK again to close the environmental variables window. The next time you start
the Tethys Server, it should display a message indicating that R is starting.

2.1.2 Download Tethys
The Tethys software repository can be accessed on Google Drive. This repository contains ZIP files for
the server, various clients, the database, and various utilities, which you can download as needed.

If you are downloading Tethys to get your database set up for the first time, it is recommended that you
download all the ZIP files in the Tethys repository. This will allow you to run the server, as well as
provide access to a sample database and an empty database ready for your data.

If you already have Tethys running on a different machine, you do not need to download everything in
the repository. For example, if your machine is not storing the Tethys database, you do not need to run
the server on your machine and therefore do not need to download Server.zip. In this case you may just
want to download the file for the client you will be using (e.g., MatlabClient.zip or PythonClient.zip) and
any associated files, as detailed below.

After identifying which ZIP files you need, simply download and unzip (right-click on the file and select
unzip) to a folder of your choice. IMPORTANT: Any folders you download must be placed in the same
folder—the hierarchy of the folder structure must be maintained because some scripts and programs
assume that resources are in specific folders.

2.1.2.1 Server
The files to run the server are contained in Server.zip. This file must be downloaded on the machine
that stores the Tethys database. Starting the server implements a RESTful web service that is used by
the client software. The server is implemented using two open-source technologies: the Python
programming language and Oracle’s Berkeley DBXML, which provides the extended markup language
(XML) database engine.

Requirements: Python39.zip (downloaded and extracted)

2.1.2.2 Clients
There are various clients that can be used to communicate with the server. There are two clients that
can be used from a web browser: the Web client and the Data Explorer. There are also clients for making
database queries using different programming interfaces: there are currently Java, Python, and MATLAB
clients, and there are plans to include an R client in an upcoming release.

2.1.2.2.1 Web client
The Web client provides a user-friendly interface for accessing and visualizing data in the Tethys
database. The user can construct simple and advanced queries, save and refine queries, and export
query results all from a web browser. The user can also visualize query results on maps and in weekly
timeseries. This is included in Server.zip and does not require a separate download.

A guide to using the Web client can be found in the documentation (see Tethys-WebClientManual)

Tethys Metadata Page 12

2.1.2.2.2 Data Explorer
The Data Explorer (DataExplorer.zip) is an interactive tool for exploring your data using a point-and-click
interface in a web browser.

Requirement: Python39.zip (downloaded and extracted)

A guide to using the Data Explorer can be found in the documentation (see Tethys-DataExplorerManual)

2.1.2.2.3 Java client
The Java client (JavaClient.zip) contains Java libraries that can be used by MATLAB, R, and of course Java.
The Java client will work with any language that has a Java interface. This is usually used behind the
scenes (e.g., the MATLAB client relies on the Java client)

More detail on the Java client can be found in Section 3, Using Tethys (see 3.6 Java client)

2.1.2.2.4 Python client
The Python client (PythonClient.zip) contains code for managing the database (e.g., graceful shutdown,
checkpoints, etc.) as well as accessing data.

Requirement: Python39.zip (downloaded and extracted)

More detail on the Python client can be found in Section 3, Using Tethys (see 3.8 Python client)

2.1.2.2.5 MATLAB client
The MATLAB client (MatlabClient.zip) contains code for accessing the database (in the db folder) and
visualizing data (in the vis folder).

Requirements: MATLAB 2018b or later & the Java client

More detail on the MATLAB client can be found in Section 3, Using Tethys (see 3.7 MATLAB client) and
extensive documentation on making database queries from MATLAB can be found in the documentation
folder (see Tethys-MATLABCookbook).

2.1.2.3 Databases
The actual database is stored in a databases folder (databases.zip). This file must be downloaded on
the machine that stores your Tethys database. When first downloaded, the databases folder will
contain two subfolders: metadata contains a new instance of a Tethys database without any
deployments, detection, or localizations (i.e., this is an empty database) while demodb contains a
demonstration Tethys database that is prepopulated with data from varying sources (e.g., SIO, SDSU,
PIFSC, and SWFSC).

Tethys Metadata Page 13

Table 1 – Contents of each database folder within the databases directory.
Folder/file name Description
db Contains files used by the Berkely DB XML database.
DeletedArchive A copy of source documents that have been deleted from

the repository. Note that multiple versions are not currently
maintained.

lib XQuery library modules and XML schema.
logs Logs detailing server activity.
ResultXML
source-docs A copy of the source documents added to Tethys are stored

in this directory. This is useful should there ever be a
catastrophic failure and the database needs to be
reconstructed from source material.

shutdown.bat A batch file to shutdown the unencrypted server. This file
may be edited to add --port option should you wish to
shutdown a server that is not running on the default port of
9779.

TemporaryFiles Workspace
tethys.bat A batch file that will launch the Tethys server with the

default options. Communication is over an unencrypted
network connection.

tethys-ssl.bat A batch file to launch Tethys with secure socket layer
encryption enabled. You must obtain a certificate and a
public/private key pair before you can start Tethys in this
mode.

2.1.2.4 Utilities

2.1.2.4.1 Documentation
A collection of documentation (Documentation.zip) that provides details on the Tethys server and
clients.

2.1.2.4.2 NilusXMLGenerator
The NilusXMLGenerator (NilusXMLGenerator.zip)is a Java library for converting detection, classification,
and localization data into a format that can be imported into Tethys. Tethys has an import tool that can
process CSV, spreadsheets, and databases without requiring any programming, but the
NilusXMLGenerator can be useful for having detectors generate output directly or for handling special
case data. This will work with any language that has a Java interface.

For details on how to implement this, please read the provided documentation (see Tethys-
NilusXMLGenerator).

2.1.2.4.3 Python39
This is version 3.9 of the Python Software Foundation’s implementation of the Python language
(Python39.zip). Many add-on packages have been installed. If you wish to see the list of packages, start
python with the arguments “-m pip freeze”.

Tethys Metadata Page 14

2.2 Start the server
When the server is started it opens a port on your computer (essentially a mailbox that lets other
programs communicate with the server). You may see a firewall prompt asking for permission to use the
port (see below). By default, the server runs on port 9779 but this can be reconfigured. Web traffic is
usually on port 80 for unencrypted traffic, and on port 443 for encrypted traffic. We use an alternative
default port to avoid conflicting with any web services that your machine may be running.

2.2.1 Using a batch file
The easiest way to start the server is to navigate to the directory where the database that you wish to
serve is located. Let’s assume that all your Tethys-associated files are in a folder called Tethys and you
want to use the demo database. You would navigate to …/Tethys/databases/demodb.

The batch file, tethys.bat, contains the directives needed to start the server using the data located in the
demodb directory. Double-click on tethys.bat.

Note 1: tethys.bat will start the server using the http: web service protocol and tethys_ssl.bat will start
the server using secure socket layer (SSL), the protocol used by financial institutions to encrypt data. To
use SSL, your machine must have a certificate issued by a certificate serving agency. Starting the server
without a certificate will fail and using self-signed (self-generated) certificates can cause client software
to fail with errors indicating that the certificate is not trusted. Directions for setting this up are in the
documentation (Tethys-SecureSocketLayer) and on the Tethys web site: tethys.sdsu.edu.

Note 2: Some IT departments may set policies that prohibit starting batch files by double-clicking. If your
administrator’s security policy does not allow you to click on batch files, open a command window
(Windows Key + R and type cmd.exe). You’ll need to change the directory to your folder containing your
database. For example, if Tethys was downloaded in C:\Users\UserName\Tethys you would type:

cd C:\Users\UserName\Tethys\databases\demodb

followed by:

tethys.bat

The first time that you run this, Windows is likely to ask you if you wish to allow the Python interpreter
to access the data port that Tethys uses to communicate between the server and its clients. The dialog
will likely look something like this:

Tethys Metadata Page 15

Figure 6 - Sample windows firewall dialog (Windows 7) requesting the user to allow Python to access the Tethys port.

Click to allow access. You may need authorization from your information technology team for this. Note:
this software was developed by employees of San Diego State University and Scripps Institution of
Oceanography. We rely on well-respected open-source software, such as that provided by the Python
Software Foundation which provides the Python interpreter and manages repositories of open-source
scientific software.

After starting the batch file, a command window should open and you should see the following:

Figure 7 – Command line interface once server is running.

The server should now be running. You can verify this by visiting http://localhost:9779/Client/ on the
same machine as the server. You should see an empty map appear. If you click on the Deployment

http://localhost:9779/Client/

Tethys Metadata Page 16

button under “Submit or Refine Queries”, you should see markers for the deployments from your
database appear on the map along with details for each deployment below the map. This is the Web
Client, which is described in more detail in section 3.4.2 and in the documentation (see Tethys-
WebClientManual).

2.2.2 Using the command line
The server can also be started by having Python execute tethys.py from the command line.

Throughout this section, server_path will refer to the path of the Server\src folder that contains
tethys.py, python_path will refer to the path to the Python39 folder that contains python.exe, and
database_path will refer to the path to the folder within databases that contains the database you would
like to serve (e.g., …databases\demodb if you want to start the server using the demo database).

Note that you can also set environmental variables that point to these paths instead of having to include
the full path yourself. For an example of this, see the tethys.bat file.

To start the server, open the command line and change the directory to server_path:

C:> cd server_path

and type:

server_path> python_path\python.exe tethys.py -r database_path

You should see something similar to Figure 7 appear in the command window. The server should now be
running. You can verify this by visiting http://localhost:9779/Client/ on the same machine as the server.
You should see an empty map appear. If you click on the Deployment button under “Submit or Refine
Queries”, you should see markers for the deployments from your database appear on the map along
with details for each deployment below the map. This is the Web Client, which is described in more
detail in section 3.4.2 and in the documentation (see Tethys-WebClientManual).

2.2.2.1 Optional arguments
To start the server, we used -r to change the resource directory to point to the database we wanted to
serve. To see all the various options, add a --help flag to the end of the statement we used previously:

server_path> python_path\python.exe tethys.py -r database_path --help

You should see something like the following:

server_path> python_path\python.exe tethys.py database_path --help
Welcome to Tethys - Server starting...
Usage: tethys.py - XML Database Server
 Default values for choices are marked by an *

Optional arguments:
 -h, --help show this help message and exit
 -s SECURE_SOCKET_LAYER, --secure-socket-layer=SECURE_SOCKET_LAYER
 Use encrypted communication (true/false*)?
 encrypted-->https:// unencrypted-->http://
 --port=PORT port to run on (default=9779)

http://localhost:9779/Client/

Tethys Metadata Page 17

 -t TRANSACTIONAL, --transactional=TRANSACTIONAL
 Use transaction processing (true*/false)?
 -d DATABASE, --database=DATABASE
 Directory (folder) name where the XML database will be
 stored (must exist). Most users wishing to specify -d
 should probably use the -r switch instead.
 -r RESOURCEDIR, --resourcedir=RESOURCEDIR
 Set Tethys's resource directory (folder). This is the
 parent directory for all data used by Tethys including
 the XML database.

--recovery RECOVERY Open the database temporarily in recovery mode. If successful, recovers,
closes and reopens normally

Each option has a long name that is preceded by two dashes, and sometimes a short name, which is
preceded by a single dash. Either one may be used.

Setting secure_socket_layer to true enables encrypted transmission. It requires the generation of
certificates and keys. While the secure socket layer is currently functioning, we will focus on
unencrypted communication as it is much simpler.

Computers communicate across networks by specifying an address and a port. The address is the
Internet protocol (IP) address of the computer running the server and is not settable. The port can be
thought of as a service address at the computer. By default, Tethys uses port 9779, but this can be
overridden.

Many databases are capable of performing operations “atomically.” This means that an operation is
either not performed or is completed but will never fail in a partially executed way. Should a failure
occur part way through an operation (e.g., a power failure), a log is used to either undo the operation or
complete it. This is known as transactional processing and is enabled by default in Tethys. We do not
recommend running the database with transactional processing set to false as unexpected events such
as power failures can lead to database corruption.

The name of the database can be overridden using the database option. When this flag is used, the
folder will be relative to the resource directory unless it contains a path separator (e.g., --database
%USERPROFILE%/Documents/testbed), which would use the testbed folder in the current user’s Documents
folder.

Files for the database are by default stored in C:/Users/Tethys/metadata, but this can be overridden
with the resourcedir option.

2.3 Shutdown the server
The proper way to shut down the server is to issue a shutdown command. There is a shutdown.bat
script in the same directory as the tethys.bat script that will do this for you.

The shutdown.bat file relies on the shutdown.py file included in the Python client. You must
download PythonClient.zip and extract the Python client for this to work.

Tethys Metadata Page 18

You can also use the command line to issue a shutdown. Open a command window and navigate to
…Tethys\PythonClient\src. Then type:

python_path\python.exe shutdown.py –server ServerName –port PortNumber

where python_path is the path to the Python39 folder, ServerName is replaced with the name of the
computer running the server (e.g., localhost if it is on the same machine) and PortNumber is the port on
which the server was started. If you did not change the default port, this can be omitted.

Alternatively, you can send a terminate command (CTRL+Break, on most keyboards, the break key is in
the row of function keys) and the server will shut down and the command prompt will close. Any in-
progress requests will be interrupted, and in-progress attempts to add data may need to be repeated,
but the database will not be corrupted.

2.4 Run the server as a service
The server can also be run as an operating system service, although this requires the download of
additional software. This means that the server will start automatically and will restart if the server
process unexpectedly dies or the server machine is restarted. We recommend using the Non-Sucking
Service Manager (NSSM) developed by Iain Patterson. Source code and executable files can be
downloaded from nssm.cc/download. As of this writing, most users should use version 2.24-101 or
newer.

Complete details on NSSM can be found in the NSSM documentation, but installation of the service can
be accomplished by opening a command window, changing the directory to where you uncompressed
the nssm download, and typing:

NSSM-Path> win64\Nssm install

This will open a dialog that has multiple tabs (Figure 8) that will need to be populated. For the discussion
below, we will assume that Tethys has been downloaded to C:\Users\myacct\Tethys: you will need to
update all paths according to where Tethys has been installed. The Application tab requires a path to
the Python executable. This will be in C:\Users\myaccount\Tethys\Python39\python.exe. The startup
directory is where the server program is located: C:\Users\myaccount\Tethys\Server\src. Arguments
must contain the name of the Tethys server program, an argument that specifies which database should
be served, and any additional arguments. As an example, if we wished to serve the demonstration
database on the standard web port (80), we would use the following arguments:

-r U:\Users\myaccount\Tethys\Databases\demodb --port 80

The Service name can be anything you wish, we recommend “Tethys.”

The Details tab simply shows how the Tethys service will appear when listed in the Windows services
interface. Display name is the name that will appear in the list and description allows people looking at
services to know the purpose they serve. We recommend using “Tethys Server” for the display name
and “Tethys Acoustic Metadata Service” for the description. Startup type allows you to determine if the

https://nssm.cc/download

Tethys Metadata Page 19

service is started automatically when the machine starts or not. If you choose to start it automatically,
we recommend using the delayed start.

The final tab that you need to populate is the Log on as tab. Select this account and enter the name and
password under which the service should be run (this can either be your account or an account that you
have created for Tethys, but it should have write permission to the database files). You will need to type
the password twice and then press install service. If all goes well, you will have a message that the
service has been installed. If you selected an automated startup type, the service will start the next time
the machine restarts. You can start the service manually from the services manager, from nssm: nssm
start Tethys.

Figure 8 – Installing Tethys as a service using Non-Sucking Service Manager (NSSM)

3 Using Tethys
At this point, it is assumed that you have an operational Tethys database. If the server is set up on a
different machine than the one you are using, your database administrator should be able to tell you the
name and port of the machine where Tethys is running.

In this section, we will describe how data is organized in Tethys, how to add and remove records from
your database, and how to access the records stored in your database (i.e., how to query the database).

Tethys itself is written in Python and it uses the XQuery language to access records stored in your
database. However, you do not need to know Python or XQuery to use Tethys successfully and complete
the abovementioned tasks. This is where the clients (i.e., Web client, Data Explorer, MATLAB, Python,

Tethys Metadata Page 20

and Java) come into play, by providing a way for users to interact with their database in a way that is
most comfortable for them.

For querying Tethys, the Web client and the Data Explorer can be used to construct queries without any
programming knowledge. For those with some programming knowledge, many templates for common
queries have already been predefined and can be accessed using function calls from one of the other
clients. Currently, MATLAB has the richest set of queries. If you need to construct queries that are more
advanced than the predefined options, it will be helpful to know XQuery (see section 3.4.6).

3.1 Data organization in Tethys
Regardless of whether you use predefined queries or write your own, it is helpful to understand the
structure behind how your data is stored in Tethys.

At a high level, you should understand that within Tethys, data are organized into different categories
called collections. For example, there is one collection that stores data about detections and a different
collection that stores data about instrument calibrations. Even though we may at some point want to
know how the instrument that detected certain calls was calibrated (and we can figure this out), these
are very different types of information and are categorized differently by Tethys.

When you add data to Tethys, it will be as some sort of document (e.g., an excel spreadsheet where an
analyst has noted the start and end times of calls). You will need to (1) specify which collection your
document is meant for and (2) ensure that your document conforms to the document structure
required for the collection you want to submit it to.

Note that, where possible, we use concepts from ISO 19115 or OpenGIS SensorML2, but our emphasis is
on meeting the needs of the marine mammal community in the most user-friendly way possible.
Consequently, we deviate from these standards. In addition, there are many concepts that are not
covered in these standards such as recording detection effort.

3.1.1 Collections
While there are a number of collections in Tethys, the six that we will discuss here are Calibrations,
Deployments, Detections, Ensemble, Events, and Localizations.

• The Calibrations collection contains information about the calibration of individual instruments,
hydrophones, or preamplifiers. Due to shared elements with the Deployments collection, it is
possible to determine calibration details for an instrument used in a specific deployment (e.g.,
date, method, responsible party, and measurements).

• The Deployments collection is used to represent information about the deployment of
instruments used to collect the data analyzed for detection and localization. It contains
information such as the number of channels, sample rate, duty cycle, etc.

2 http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020 and
http://www.opengeospatial.org/standards/sensorml respectively

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020
http://www.opengeospatial.org/standards/sensorml

Tethys Metadata Page 21

• The Detections collection describes when events have been detected within a specific

deployment and can be of varying scale. An example of a fine scale detection might be reporting
individual echolocation clicks produced by a Risso’s dolphin while a medium scale detection
might indicate that there was an acoustic encounter of Risso’s dolphins between some start and
end time. Finally, one can report binned presence/absence (e.g., hourly) information. In addition
to the detection events, attachments can be added. These attachments include audio files and
images related to the detection events. Note that a maximum of 500 files can be attached to a
given detection document (this limitation will be removed in a future release).

• The Ensemble collection allows multiple instruments to be referenced as one, which is useful
when performing beamforming or localization on a large aperture array that contains separate
instruments.

• The Events collection is used to specify events that may be of interest in the analysis. One such
example might be a planned activity with possible consequences such as oil exploration.
Individual detections of anthropogenic events such as airguns would be recorded in the
Detections collection, but the knowledge that oil exploration was being conducted over a given
time and location could be denoted in the Events collection.

• The Localizations collection denotes the source location of a sound source using either relative
or absolute coordinates and permits the user to reference a detection in the Detections
collection if appropriate.

When adding data to your database, you may only need to add a document to one collection. For
example, if you wanted to record a new instrument deployment, you would add one document to the
deployment collection. If you wanted to record detections that occurred at a site for which a
deployment document already exists, you would add one document to the detections collection.
However, sometimes you need to add documents for multiple collections. For example, if you detected
calls at a new location you would need to add a document to the detections collection and add a
document to the deployment collection.

For each collection, there is a schema that defines what data can be placed in the collection. You can
think of a schema as a set of rules defining what data can be included and how it should be structured.
This means that a document must match the schema of the collection it is added to. In some cases, the
schema is well defined and values will be required for certain fields (e.g., if you are submitting a
detections document you would be required to denote information about what you detected and
where). Other times, the schema is looser and allows you to define new types of information that you
want to include in the database. This is why a detection document and a calibration document are
stored in different collections—while we would want to require information about what was detected
and where for a detection document, this would not make sense for a calibration document.

Tethys Metadata Page 22

3.1.2 Document structure
The various types of documents that the Tethys schema can support are described at a high level in this
section. Although many of the document types correspond to the collections described previously, there
are a few additional document types included in this section. The goal is to describe the types of
information contained in the documents and the required elements, rather than every last detail. More
detailed descriptions can be found in Appendix 5 which describes the full schema that structures each
document type.

When you add a document to Tethys it is converted into extensible markup language (XML), which is a
language used for structuring data. The core of XML is quite simple: data is contained within elements
that provide structure. The start of each element is denoted by its name enclosed in < > and the end by
the element name within </ >. A small XML fragment from a Deployment document is shown below:

<Deployment>
 <Id>SOCAL32-A</Id>
 <Project>SOCAL</Project>
 <DeploymentId>32</DeploymentId>
 <Platform> Mooring </Platform>
 other entries...
</Deployment>

Note that units are standardized when recorded in the database. Date and time follow the ISO
8601:2004 standard and are recorded in universal coordinated time (UTC). As an example, January 30th,
at 6:22:30 PM UTC would be written 2013-01-30T18:22:30Z. Latitudes and longitudes are recorded in
decimal form from 90 degrees (N) to -90 degrees (S) and 0 to 360 degrees (E).

Call types are not standardized in Tethys. While we offer recommendations in the supplemental
material of Roch et al. (2016), there is not a consensus in the scientific community for all call names, and
thus we do not enforce a standard.

3.1.2.1 Calibration documents
Calibration documents record information about the calibration of an instrument. Information such as
when a calibration occurred, who was responsible, the methods used, as well as the actual frequency
responses are described here.

Required elements in a calibration document include Id (identifier for the instrument being calibrated),
TimeStamp (date and time the calibration occurred), Type (the type of calibration, e.g., hydrophone),
QualityAssurance (details on the data quality), IntensityReference_µPa (a reference intensity for the
measurements), FrequencyResponse (a list of frequencies and responses), and MetadataInfo (details on
who is responsible for the calibration metadata).

3.1.2.2 Deployment documents
Deployment documents record information about the deployment of an instrument. As many
instrument designers have existing databases for their instruments, the goal of deployment documents
is to provide enough information to access an instrument database and then to describe how the
instrument was used. Information such as how and where an instrument was deployed, references to

Tethys Metadata Page 23

tracklines for moving platforms, sensor packages, and configuration are all described here. While the
emphasis is on acoustic data (e.g., sampling rates, duty cycles, quantization), the schema permits the
description of arbitrary instrumentation.

Required elements in a deployment document include Id (a unique identifier for the deployment),
Project (the name of the project the deployment is associated with), DeploymentId (numeric identifier
for the deployment), Platform (the platform on which the instrument was deployed, e.g., mooring),
Instrument (the instrument type and identifier), SamplingDetails (information about the recordings on
each channel, e.g., sample rate), Data (data the instrument collected; typically a URI for audio data),
DeploymentDetails (information about the deployment, such as location and time), and Sensors (the
sensors on the instrument).

3.1.2.3 Detection documents
Detection documents record information about the process used to perform the detections, the source
data, and the effort, which indicates which species and calls were searched for in the detection process.
Recording effort is essential as a lack of detections for a specific species/call type is not relevant unless
one was actually looking for them.

Required elements in a detection document include Id (a unique identifier for the document),
DataSource (acoustic data identifier), Algorithm (details on the detection method), UserId
(identification of the user that submitted the document), Effort (span and scope of detection effort),
OnEffort (information about individual detections).

3.1.2.4 Ensemble documents
Ensemble documents provide a means of logically grouping instrument deployments. This is most useful
for large aperture localization where separate instruments may be deployed individually, but the data
within them are to be treated as if they originated from a single instrument.

Required elements in an ensemble document include Id (a unique identifier for the ensemble) and Unit
(identifies an instrument within an ensemble and associates it with a deployment).

3.1.2.5 Event documents
Event documents denote phenomena or events that are derived from other knowledge sources.
Examples include planned Naval exercises, whale watching cruises, pile driving, oil exploration,
earthquakes, etc. Information about the type of event and the time period during which it took place
are described here.

Required elements in an event document include Name (the name of the event), Description
(information about the type of event and responsible party), Start (event start time), and End (event end
time).

3.1.2.6 Localization documents
Localization documents provide location information in the form of absolute locations or bearings.
Localizations can be derived from data sources consisting of a single instrument deployment or an
ensemble of multiple instrument deployments.

Tethys Metadata Page 24

The localization data itself consists of either a bearing or a location. Bearings consist of a horizontal and
optional vertical angle, specified in degrees. Locations are x, y, and optional z distances, specified in
meters relative to the zero location. For either type of localization, standard error may be specified in
the same units. Finally, when a location is a result of several crossed bearings, an optional list of
bearings (event identifiers from previous localizations) may be provided to link the position to the
bearings used to produce it.

Required elements in a localization document include Id (unique identifier for the document),
DataSource (the deployment or ensemble from which localizations were obtained), Algorithm
(description of detection algorithm), ResponsibleParty (person or organization that generated the
metadata), UserId (user that submitted the document), Effort (type of localization and when it
occurred), and Localizations (information about individual localizations).

3.1.2.7 ITIS document
An essential element for being able to conduct meta-studies is to use consistent naming conventions. To
that end, we have adopted the integrated taxonomic information system (ITIS, www.itis.gov) for
describing species.

The ITIS collection contains one document, which is a snapshot of ITIS. Each entry has a taxonomic serial
number (TSN), completename (scientific name), and vernacular entries.

Tethys’s XML representation of ITIS supports physical phenomena by defining them with negative
taxonomic serial numbers. Currently, there is a single TSN entry, Other, for physical phenomena. Due to
the structure of the Tethys schema, the other category is represented as a Kingdom which is of course
incorrect. As the taxonomic serial numbers (TSNs) used by ITIS are not user-friendly (e.g., 180514 is the
TSN for Stejneger’s beaked whale, Mesoplodon stejnegeri), library functions permit the translation
between TSNs and common or scientific names.

3.1.2.8 ITIS ranks document
The ITIS ranks document contains a non-hierarchical version of the ITIS document. In ITIS, there are
some Latin taxonomic names that are duplicated in different hierarchies. For example,
Hoplophthiraccarus spiniformis is a species that occurs in multiple subgenera. In the ITIS ranks
document, only the first occurrence is used. A list of duplicate entries that are not included in the ITIS
ranks document can be found in ‘Notes on provided source documents.docx’ located in
databases/yourdatabase/source-docs.

3.1.2.9 Species Abbreviation documents
Detections are attributed to entries in the ITIS collection and are stored in Tethys as TSNs, which are not
conducive to human interpretation. Although the ITIS collection can map to vernacular names in several
languages, as well as scientific names for each species, many research organizations have their own set
of names or abbreviations that they use to refer to species. For example, at the Scripps Whale Acoustics
Lab, it is common to use abbreviations based on the genus and species names, such as Zc to denote
Ziphius cavirostris, or Cuvier’s beaked whale.

http://www.itis.gov/

Tethys Metadata Page 25

Unfortunately, the California sea lion, Zalophus californianus, would also be abbreviated Zc using this
system, and consequently, it is very difficult to develop an abbreviation/local name list that would work
for all groups. The Species Abbreviations collection provides a method for labs to use their own set of
local names or abbreviations.

A species abbreviation document provides mappings between a local name or abbreviation and the
Latin species name. Here’s an example of how this would look if you wanted to use the abbreviation
system used at the Scripps Whale Acoustics Lab:

<Abbreviations>
<Name>SIO.SWAL.v1</Name>
<Map>
 <completename>Megaptera novaengliae</completename>
 <coding>Mn</coding>
</Map>
<Map>
 <completename>Balaenoptera acutorostrata</completename>
 <coding>Ba</coding>
</Map>
...
</Abbreviations>

Where we have a <Name> element for the name of our species abbreviation document, and multiple
<map> elements where you can provide the species Latin name for the <completename> element and the
abbreviation you would like to use for that species for the <coding> element.

3.1.2.10 External document types
Tethys provides the ability to access external data sources which are represented as collections prefixed
with the name ext: followed by a collection name. Tethys provides what is known as a mediation service,
providing a consistent way of accessing these external data sources. These are returned as XML
documents that can be manipulated like any other data that Tethys returns.

Data access is constructed in a manner that looks similar to XML document navigation. The user
specifies the collection they want, followed by a set of slash (/) separated parameters and terminated
with an exclamation point:

collection("ext:MediatorServiceName")/parameter1/.../parameterN!

Currently, mediation is provided for several types of external collection types described in the following
sections.

When Tethys accesses an external collection, it caches the results for approximately seven days (default)
on the Tethys server. Consequently, if the same data is requested multiple times, subsequent queries
are faster. This is particularly helpful when developing routines to analyze data where the same query
may be executed dozens of times as the analysis routine is written. The cached results are stored in
yourdatabase/db/mediator_cache. In rare cases, one may wish to disable this behavior. Examples of this
include services that provide different results for the same parameters (e.g., report current conditions)
and when one knows that a service has been recently corrected.

Tethys Metadata Page 26

There are two ways to ensure that mediated services retrieve values directly from the Internet. The first
is simply to add a colon followed by cacheupdate after the mediation service name, e.g.,

collection("ext:MediatorServiceName:cacheupdate")/parameter1/.../parameterN!

Data are retrieved from the mediator service and the mediator cache will be updated with the new
results. A second and more drastic way to clear the cache is to empty the mediator_cache using one of
the client programs such as the Python client’s clear_documents.py . Both methods will work but
emptying the mediator_cache clears the cache of all documents for every user, so the cacheupdate
parameter is usually the preferred mechanism for ensuring a fresh copy of the data.

3.1.2.10.1 Ephemeris data
Ephemeris, information about astronomical objects, can be obtained through an interface to NASA JPL’s
Horizons Web Service (Giorgini et al., 1996). While NASA’s system provides information on a variety of
astronomical objects, the mediator interface has been primarily tested for solar and lunar information.

The Horizons service is accessed via the ext:horizons collection. An example query might look like this:

collection("ext:horizons")/target="sol"/latitude=32.8/longitude=243.8/start="2009-10-01T00:00
 08:00"/stop="2009-10-04T00:00-08:00"/interval="5m tvh"!

The arguments may appear in any order and are as follows:

• target – Celestial body. The horizons mediator knows the names “sol” and “sun” for the sun,
“moon” and “luna” for the moon.

• latitude and longitude – Position of the location in degrees for which the ephemerides are to
be computed. Latitude must be in the interval between 90° (N) and -90° (S), and longitude must
be between 0 and 360° E. Note that this is the format in which Tethys stores latitude and
longitude, so no conversion is needed.

• start and stop – Time in ISO8601 format (YYYY-MM-DDTHH:MM:SS). All times are assumed to
be in universal coordinate time (UTC), which is the Tethys default.

• interval – How often the ephemeris should be computed. When determining transit (rise/set),
this should be in intervals of 5 m with the tvh flags set as in the example above.

Tethys will return XML describing the ephemerides. The document consists of a set of entries describing
information about the celestial object in question. The result of the query above with manually added
comments is:

<?xml version="1.0" encoding="utf-8"?>
<ephemeris>
 <entry>
 <date>2009-10-01 01:35:00</date>
 <sun type="civil">day</sun> <!-- Civil sunset -->
 <moon>set</moon>
 </entry>
 <entry>
 <date>2009-10-01 13:44:00</date>
 <sun>day</sun>
 <moon>rise</moon>

http://ssd.jpl.nasa.gov/?horizons

Tethys Metadata Page 27

 </entry>
 <entry>
 <date>2009-10-01 19:38:00</date>
 <sun>day</sun>
 <moon>transit</moon>
 </entry>
 <entry>
 <date>2009-10-02 01:32:00</date>
 <sun type="civil">night</sun> <!-- Civil sunrise -->
 <moon>set</moon>
 </entry>
 <entry>
 <date>2009-10-02 13:41:00</date>
 <sun>day</sun>
 <moon>rise</moon>
 </entry>
 <entry>
 <date>2009-10-02 19:35:00</date>
 <sun>day</sun>
 <moon>transit</moon>
 </entry>
 <entry>
 <date>2009-10-03 01:29:00</date>
 <sun type="civil">night</sun>
 <moon>set</moon>
 </entry>
 <entry>
 <date>2009-10-03 13:43:00</date>
 <sun>day</sun>
 <moon>rise</moon>
 </entry>
 <entry>
 <date>2009-10-03 19:37:00</date>
 <sun>day</sun>
 <moon>transit</moon>
 </entry>
</ephemeris>

Note that, in most cases, information about the moon is returned as well.

3.1.2.10.2 Time zone data
The time zone collection can provide the time zone for a specific longitude and latitude based on
nautical time zones that consist of 15° gores centered on the prime meridian or based on civil
boundaries. In general, the nautical gores are preferred as the civil boundaries are from a community
effort maintained at http://new.earthtools.org/webservices.htm and may be subject to error. An
example of a nautical time zone query (the default) is:

collection("ext:timezone")/latitude=32.8/longitude=243.8!

Arguments can appear in any order and are:

• longitude and latitude – Position of the location in degrees for which the time zone is to be
computed. Latitude must be in the interval between 90° (N) and -90° (S), and longitude should
be between 0 and 360° E, although the mediator will also take degrees west as a negative

http://new.earthtools.org/webservices.htm

Tethys Metadata Page 28

number. Note that this is the format in which Tethys stores latitude and longitude, so no
conversion is needed.

• tztype – Must be “nautical” or “civil.” Nautical is the default if omitted. Use civil with extreme
caution as it has not been well verified.

The query above produces the following XML:

<?xml version="1.0" encoding="utf-8"?>
<timezone xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.earthtools.org/timezone-1.1.xsd">
 <version>1.1</version>
 <location>
 <latitude>32.800000</latitude>
 <longitude>-116.200000</longitude>
 </location>
 <offset>-8</offset>
 <suffix>U</suffix>
 <localtime/>
 <isotime/>
 <utctime/>
 <dst>Unknown</dst>
</timezone>

In most cases, the element of interest in a time zone query is the offset which in this case is -8 hours
from UTC.

3.1.2.10.3 NOAA ERDDAP data
NOAA’s Environmental Research Division Data Access Program (ERDDAP) provides a method of
accessing a wide variety of environmental and biological data. ERDDAP provides code to access most
environmental data directly but using the Tethys interface permits the queries to be driven by the
results of other queries.

ERDDAP organizes data either as a grid or a table and uses data access protocols named griddap and
tabledap respectively. Latitude and longitudes follow the same conventions as Tethys, latitude is
expressed in degrees North and longitude in degrees East.

The first step in using ERDDAP is to decide what type of data is to be used and then to find an
appropriate data set. We will begin by looking for sea surface temperature. Throughout this section, we
will use examples from the MATLAB client (section 3.4.4). In this example, we will begin by looking for
sea surface temperature and assume that we do not know anything about ERDDAP’s naming
conventions. Consequently, we begin by invoking dbERDDAPSearch with no search parameters:

dbERDDAPSearch(queryH); % Assumes that queryH = dbInit() has been executed

This function returns the URL of the ERDDAP search page, but, more importantly, opens a web browser
that allows one to search for a desired dataset. The ERDDAP search page allows full-text search as well
as search by a number of categories as well as by geo-temporal constraints. In our case, we will use the
keywords category to search for sea_surface_temperature:

https://coastwatch.pfeg.noaa.gov/erddap/index.html

Tethys Metadata Page 29

Figure 9 - The ERDDAP search web interface allows one to search for data by specifying multiple criteria.

Geographic constraints can be found by specifying a bounding box either in the boxes or by dragging a
rectangle on the map. Time constraints are specified in the ISO 8601:2004 time format used by Tethys
(e.g., 2013-01-30T18:22:30Z). After pressing the Search button, the results will show a list of datasets
meeting the specified criteria. Each dataset has a unique identifier (Dataset ID) that will be used in all
queries involving that dataset.

As one learns the search vocabulary, it becomes relatively simple to search for specific datasets from the
command line. Each of the search parameters is joined by an ampersand (&). The following MATLAB and
XQuery statements both find the URL for a region within approximately 5 km of an instrument deployed
on the southeast side of the Santa Cruz Basin in the Southern California Bight:

dbERDDAPSearch(queries, 'keywords=sea_surface_temperature&minLat=33.47&maxLat=33.56&
minLong=240.71&maxLong=240.80')

Although not covered until the section on the XQuery language, it is worth noting that this MATLAB
function simply translates the search to an XQuery which returns a URL that is then opened by the
MATLAB function:

collection("ext:erddap_search)/keywords=sea_surface_temperature&minLat=33.47&maxLat=33.56&
minLong=240.71&maxLong=240.80!

Once the ERDDAP data set has been identified, it can be queried to retrieve the data. In this example,
we will use the NOAA Coastwatch eight-day composite sea surface temperature dataset from the Aqua
MODIS satellite which has the dataset identifier erdMWsstd8day. When we locate this dataset in the

Tethys Metadata Page 30

web page, we see that the data is listed in the Griddap column indicating that we should expect gridded
data to be returned (Figure 10).

G
ridDA

P D
ata

Sub-set
Table DA

P D
ata

M
ake A

 G
raph

W
M

S

Title

Sum
m

ary

FG
DC

,ISO
,M

etadata

B
ackground Info

R
SS

E-m
ail

Institution

D
ataset ID

 data
 graph

 M

SST, Aqua MODIS,
NPP, West US, Daytime
(8 Day Composite)

 F I M

background

N
O

AA
CoastW

atch

erdM
W

sstd8day

Figure 10 - Row from an ERDDAP data search for sea surface temperature.

Other sources, such as buoys, might be expected to return tabular or vector data as shown in the
Tabledap column.

Clicking on the data link (Figure 10) exposes more information about the dataset (Figure 11). It shows
the dimensions of the dataset indices. To query this dataset, we need to specify four sets of indices:
time, altitude, latitude, and longitude. The minimum and maximum values of the dataset can be seen by
moving the cursor over the dimension or in the more detailed data attribute structure which is shown
beneath the sliders although it has not been reproduced here.

Tethys Metadata Page 31

Figure 11 – ERDDAP Aqua Modis 8-day sea surface temperature composite. This dataset is accessed using four dimensions:
time, altitude, latitude, and longitude. Positioning the cursor (mouse pointer) over any one of these will show the possible
values and the resolution of the data.

The sea surface temperature variable is called sst as shown in the Grid Variables section (Figure 11). To
construct a query, we need to specify the following:

• dataset identifier (erdMWsstd8day, in this example)
• variable(s) to be returned (sst, in this example)
• list of dimensions.

Each dimension is enclosed in square brackets, [], and this dataset will require four sets of these. Each
set of brackets has the following syntax: [StartValue:StrideValue:StopValue]. The values may either be
indices from 1 to the number of grid points, or in the units associated with the grid axis (e.g., time,
longitude, etc.). When values are specified in units as opposed to indices, they must be enclosed in
parentheses (). The StrideValue indicates how often data should be returned. A stride of one indicates
that all data points are returned, two would be every other one, etc.

Continuing our example, we would have the following values:

• time: [(2012-11-13T00:00:00Z):1:(2012-11-13T00:00:00Z)]
• altitude: [(0.0):1:(0.0)]'
• latitude: [(33.47):1:(33.59)]
• longitude: [(240.7):1:(240.80)]

These are all assembled as follows in an XQuery:

collection("ext:erddap")/erdMWsstd8day?sst[(2012-11-13T00:00:00Z):1:(2012-11-
13T00:00:00Z)][(0.0):1:(0.0)][(33.47):1:(33.59)][(240.7):1:(240.80)]!

Tethys Metadata Page 32

Tethys will return an XML document with the data:

<?xml version="1.0" encoding="utf-8"?>
<table>
 <header>
 <time units="UTC" type="String"/>
 <altitude units="m" type="double"/>
 <latitude units="degrees_north" type="double"/>
 <longitude units="degrees_east" type="double"/>
 <sst units="degree_C" type="float"/>
 </header>
 <row>
 <time>2012-11-13T00:00:00Z</time>
 <altitude>0.0</altitude>
 <latitude>33.475</latitude>
 <longitude>240.7</longitude>
 <sst>16.83</sst>
 </row>
 <row>
 <time>2012-11-13T00:00:00Z</time>
 <altitude>0.0</altitude>
 <latitude>33.475</latitude>
 <longitude>240.7125</longitude>
 <sst>16.77</sst>
 </row>
 … more entries
</table>

which consists of a header element describing the data and the units in which they are represented.
Following the header is a series of row elements, where each element describes a grid point.

Language-specific interfaces will parse this information into a usable format. As an example, the
MATLAB command dbERDDAP expects a query handler and the portion of the query string between
collection("ext:erddap)/ and the exclamation point (!):

data = dbERDDAP(queries, 'erdMWsstd8day?sst[(2012-11-13T00:00:00Z):1:(2012-11-
13T00:00:00Z)][(0.0):1:(0.0)][(33.47):1:(33.59)][(240.7):1:(240.80)]')

The returned data is a structure that contains three fields:

• Axes – Description of the axes
• Data – A structure with the returned data.
• dims – The dimensions of the data

3.2 Adding data to Tethys
Data can be imported into Tethys in a variety of formats. When the data being imported is not stored in
XML, a translator needs to be used to map the row-oriented data to XML. This translator is called a
source map. This section contains a brief introduction to source maps (more details can be found in
Appendix 6) and explanations of how to import documents, update previously imported documents, and
view attachments to imported documents.

Tethys Metadata Page 33

Such sources can come from comma-separated value files, spreadsheet workbooks, databases, and
anything else that supports the open database connectivity protocol.

3.2.1 Source maps
When possible, we recommend that detectors generate XML conforming to the Tethys schema (see
section 5). However, it is not uncommon to want to import detections from an already established
format. Most such formats can be thought of as tables, and facilities exist to import them from comma-
separated value lists, spreadsheet workbooks, and a wide variety of database products. Regardless of
the data source, a common issue is how the data source, with its own organization and field names, can
be translated into the XML required by Tethys. To do this, we use what is called a source map. Source
maps are described in more detail in the Importing Data Into Tethys (DataImport) manual, but will be
briefly introduced in this section. While it is useful to understand how source maps are structured, the
Web client provides an interface for creating a source map where you can import your source data and
then drag and drop the required Tethys schema elements onto the corresponding fields of your source
data.

Each source map consists of an XML element called <Mapping> with three children:

<Name> – Unique name used to specify which mapping should be used. In our example, the map
Name is SIO.SWAL.Detections.Analyst.v1, but any name may be used.

<DocumentAttributes> – This section contains information that will be added to the document so
that the database knows which schema should be used to validate the document. In most cases,
this section should just be copied from one of the existing examples.

<Directives> – This element contains children that specify how the translation is to be done.
Within the Directives elements, one can specify sheets of a workbook to use or sequential query
language (SQL) queries to databases. Each row of these data sources is then processed
according to the instructions.

The following example shows the details of a <Directives> element from
SIO.SWAL.Detections.Analyst.v1 which is included in the sample database:

<Mapping>
 <Name> SIO.SWAL.Detections.Analyst.v1 </Name>
 <DocumentAttributes> … omissions … </DocumentAttributes>
 <Directives>
 <Detections>
 … omissions …
 <OnEffort>
 <Sheet name="Detections">
 <Detection>
 <Entry>
 <Source> [Input file] </Source>
 <Dest> Input_file </Dest>
 </Entry>
 <Entry>

Tethys Metadata Page 34

 <Source> [Start time] </Source>
 <Kind> DateTime </Kind>
 <Dest> Start </Dest>
 </Entry>

 <Condition>
 <Predicate>

 <Operand> [End time] </Operand>
 <Operation op=”empty” retain=”iffalse”/>

 <Entry>
 <Source> [End time] </Source>
 <Kind> DateTime </Kind>
 <Dest> End </Dest>
 </Entry>
 … omissions …
 </OnEffort>

… omissions …
 </Detections>
 </Directives>
</Mapping>

For each row in the Detections sheet of a workbook, a <Detection> element will be produced as shown
below with many of the elements omitted:

<Detections …attributes…>
 … many omissions, only Start shown for each Detection …
 <OnEffort>
 <Detection> … <Start> 2012-06-01T14:50:22.52Z </Start> … </Detection>
 <Detection> … <Start> 2012-06-01T14:50:23.9Z </Start> … </Detection>
 <Detection> … <Start> 2012-06-01T14:50:41.32Z </Start> … </Detection>
 … other rows …
 </OnEffort>
</Detections>

Elements nested within a <Directives> element are simply copied, with the exception of the following
processing elements:

• <Sheet> and <Table>: Both of these elements are used to specify data from the current data
source. The <Sheet> directive should be used with spreadsheets and expects the attribute name
to indicate which sheet of the workbook will be used. For <Table>, the query attribute is used
and may be any valid SQL query for the database. <Table> also works on Microsoft Excel
spreadsheets, treating sheets as tables. Note that Microsoft’s libraries append a dollar sign ($)
to sheet names when they are treated as database tables.

• <Entry>: Specifies how fields in the spreadsheet or database will be transformed to an element
expected by Tethys. <Entry> elements are always children of <Sheet> or <Table> elements and
contain children describing the translation:

o <Source>: One or more field names, enclosed in square brackets []. Multiple fields can
be specified and will be merged.

o <Kind>: Specifies the data format. For text fields, this is not needed. Valid kinds are:
LongLat, DateTime, Integer, Number, and SpeciesCode. These are described more fully
in details.

Tethys Metadata Page 35

o <Default>: Value to use in cases of missing data. If no default is provided, no value is
produced. Defaults may be strings, numbers, or the special value {id} which indicates
that the document identifier is to be used.

o <Dest>: Name of the output element.

3.2.2 Importing documents to Tethys
Data can be added to the database with XML documents that conform to the Tethys schema (Appendix
5) or with documents in a different format that have a source map. Ideally, tools used by researchers
will use the Nilus application programming interface to generate XML directly, but many existing tools
generate data in other formats. Consequently, Tethys provides data import support for the following
data sources:

• Microsoft Excel workbooks
• Comma-separated value lists (text files with commas between entries)
• Microsoft Access
• Most databases

Data import services are provided using industry standard open database connectivity (ODBC), and
hence most databases including but not limited to MySQL, Oracle, Visual Fox Pro, PostgreSQL, etc.
should function, provided that the database has an ODBC driver and that it has been installed on the
Tethys server machine. For data sources such as Excel and comma-separated value lists, it is assumed
that the first row contains the names of each field. Filenames can contain numbers, letters, dashes, and
periods. Commas and ampersands (&) in filenames are not supported.

See Importing data in the Tethys Data Import manual for complete details.

3.2.3 Updating existing documents
Please see the Document Modification section of the Data Import manual for details on how to update
or modify existing documents.

3.2.4 Viewing attached images in a web browser
Many Detections include audio and/or image files, which are attached when adding the Detections to
the Tethys database. The uploader program will upload any image and audio files listed in the image and
audio fields. These are expected to be in directories with the same name as the detection document
with –image and –audio appended. As an example, if the detection document is Socal36Odontocetes-
SilbidoDetector the image and audio directories would be Socal36Odontocetes-SilbidoDetector-image
and Socal36Odontocetes-SilbidoDetector-audio. A maximum of 500 files can be attached to any
detections document.

One way to view an attached image is using the REST server component of Tethys.

First, the Tethys server needs to be running. In this example, the server is running as localhost with port
9779.

Tethys Metadata Page 36

Next, open a web browser such as Firefox. To view an image, type in the address using the server
location. Note that the document Id does not have the file type suffix (such as .xls) but that the name of
the image file does have the file type.

For attached images you will need the following information:

• Server (e.g., localhost)
• Port (e.g., 9779)
• Collection (e.g., Detections)
• Detections doc Id (e.g., ALEUT02BD_MF_MFAOrca_ajc)
• Image name (e.g., Other-ALEUT2BD-20101211T061447.jpg)

The address we would then type into the web browser would be:

http://localhost:9779/Attach/Detections/ALEUT02BD_MF_MFAOrca_ajc?Image=Other-ALEUT2BD-
20101211T061447.jpg

which should produce:

Figure 12 – Detections document attachment viewed in a web browser.

3.3 Removing/modifying data
Data removal and modification is described in the Data Import manual.

3.4 Query
A query is essentially a request for information that you make to your database. Perhaps you want the
start times of all Risso’s dolphin clicks in your database, or to know if there has been any effort to look
for fin whales at a specific location—these are each individual queries that you could make to your
database.

Tethys Metadata Page 37

There are numerous ways you can query your database. You can use the Data Explorer or Web client to
make queries from a web browser, you can take advantage of many template queries that are included
with the clients, or, if you need to make queries that are more advanced, you can write your own
queries in the XQuery language. This section will walk through all of these options.

3.4.1 Data Explorer
The Data Explorer is a user-friendly way to investigate the data available in Tethys. As you click around
the interface, queries are being executed in the background: the user does not need to know how to
formulate a query to use this tool successfully.

Details on using the Data Explorer are provided in the Tethys-DataExplorerManual.

3.4.2 Web client
The Web client provides an interface for the user to form database queries from a web browser. While
an understanding of the way data is structured in Tethys is helpful for using this tool, no programming
experience is required.

The Web client enables the user to form both simple and advanced queries, save the results of a query,
and save the query itself (written in XQuery) for use or modification in one of the other clients.

Details on using the Web client are provided in the Tethys-WebClientManual.

3.4.3 Java client
The Java client provides basic functionality and consists of two Java classes. The Client class represents
client information about the Tethys server, and the Queries class provides an interface to the server.

The Client constructor has a single argument, a URL which will be used to communicate with the Tethys
server. This can either be an instance of the java.net.URL or java.lang.String classes. Once the client is
created, one can create a Queries instance which takes an instance of Client as the argument to its
constructor:

import dbxml.Client;
import dbmxl.Queries;

// Initialize connection to Tethys on port 9779 (the default port).
// Substitute an appropriate domain, use https:// for a secure socket layer connection
// The java.net.URL class can also be used.
Client client = new Client("http://tethys.nwfsc.noaa.gov:9779");
Queries queryHandler = new Queries(client);

We refer to instances of the Queries class as query handlers. Once a query handler has been
constructed, the Client instance is no longer needed. The query handler provides the following methods:

• boolean ping() – Attempts to contact the Tethys server and returns true if the server is capable
of responding, otherwise false.

• String Query(String query) – Executes the XQuery contained in query and returns the result in
a string.

Tethys Metadata Page 38

• String QueryTethys(String query) – Similar to the Query method, except that the following
namespace declarations are prepended to the query:

declare default element namespace "http://tethys.sdsu.edu/schema/1.0" at "tethys.xsd";
import module namespace lib="http://tethys.sdsu.edu/XQueryFns" at "Tethys.xq";

These imports load in the schema and library module for Tethys and are required for many
Tethys queries. The primary purpose of this method is to let interactive users perform short
queries without the need to declare namespaces. In most production code, the user should use
Query or QueryReturnDoc.

• Document QueryReturnDoc(String query) – Executes the XQuery contained in query and returns
the result as a document object model (DOM) object. DOM is an in-memory graph
representation of an XML document and provides a standard interface to access the various
elements of the XML document. The Document class is defined in org.w3c.dom.Document.
There are numerous tutorials on the DOM interface that can be found on the web and in books
on XML.

• String xmlpp(String xmldoc) – Given a serialized XML document (one represented as a string),
format it to be aesthetically pleasing with proper indentation. Note that this can be slow for
large documents. As an example, if xmldoc contains:

<Detection><Input_file>H:\SOCAL44N_disk06\SOCAL44N_disk06_5s_100Hz.ltsa</Input_file><St
art>2011-08-17T02:58:12.500Z</Start><End>2011-08-
17T03:18:02.500Z</End><Event>02/28/1213:05:56</Event><SpeciesId>180444</SpeciesId><Call
>Clicks</Call><Parameters><Subtype>A</Subtype></Parameters></Detection>

it will be transformed to:

 <Detection>
 <Input_file>H:\SOCAL44N_disk06\SOCAL44N_disk06_5s_100Hz.ltsa</Input_file>
 <Start>2011-08-17T02:58:12.500Z</Start>
 <End>2011-08-17T03:18:02.500Z</End>
 <Event>02/28/12 13:05:56</Event>
 <SpeciesId>180444</SpeciesId>
 <Call>Clicks</Call>
 <Parameters>
 <Subtype>A</Subtype>
 </Parameters>
 </Detection>

• URL getURL() – Returns the URL to which the query handler is associated.
• String getURLString() – Returns a string representation of the URL returned by getURL().
• String queryJSON(String json) – Simple method for querying against the database. Allows

querying the database without knowing XQuery. The json argument contains information
indicating what should be queried. It consists of several sections:

o select - A set of selection criteria indicating what should be selected.
o return – A list of elements to be returned.
o species – An indication of how SpeciesId elements should be interpreted, e.g., using a

specific set of abbreviation names, Latin names, etc.

Tethys Metadata Page 39

o namespaces – A value of 0 removes XML namespaces in returned results (you might
want this if you don’t know what an XML namespace is), a value of 1 (default) leaves
them entact.

o enclose and enclose_join – When the query results in results from repeated items,
setting the optional enclose to 1 results in each group of repeated items being enclosed
in an XML document. Enclose_join is used to specify an XML element name that wraps
sets of documents that have been joined from multiple collections, such as a query that
uses both detections and deployments. Enclose_join defaults to the name <Record>.

Complete details and example queries using the JSON notation can be found in the Tethys
Web Services documentation. An optional numerical argument following the XpathExpr has
the following meaning:

0. Execute the query
1. Show the internal query plan. This is not useful for most users.
2. Show the XQuery that was generated from the JSON specification.

• String XPath(String xmlstr, String XPathExpr) – Execute an XML path (XPath) expression
against an XML string. XPath is a simple language for querying XML documents. XPath enables
navigation through nested XML elements by separating them with slashes. As an example,
consider the following XML document:
<outer>
 <inner>hi there</inner>
 <inner>you</inner>
</outer>
If we wanted to extract the text associated with the first inner element, we could use the XPath
/outer/inner. To retrieve the second inner element, we could append an index in square
brackets: /out/innter[2]. XPath is described in numerous web tutorials and books. Note that
this is a utility function and does not interact with the Tethys server, it is simply used to process
XML that may have been retrieved from a Tethys server.

The following methods require a collection name and a document identifier (docId). The docid is the
document identifier that is frequently the same as the Id element in some documents, but not
necessarily so. A documents identifier can be found by using the base-uri XQuery function which
returns dbxml://collection_name/docId. As an example, this XQuery would list the document
names for all Detection documents:
for $d in collection("Detections")
 return base-uri($d)
You can also see a list of document names in a web browser (e.g., Chrome or Firefox) by typing the
collection name after the web address. For example, if the server is running on an unsecure
channel, http://mytethys.dom/Detections where mytethys.dom is replaced with your local server
name.

Tethys Metadata Page 40

• String getDocument(String collection, String docid) – Return specified document from the
specified collection.

• Document getDocumentObjectModel(String collection, String dociId) – Return specified
document from the collection. Result is formatted as a document object model (DOM).

• String removeDocument(String collection, String docid) – Remove specified document from
the specified collection.

3.4.4 MATLAB client
The MATLAB client can be used to add data to the database and to query the database. See the Tethys-
MATLAB Cookbook for a more detailed description of using the MATLAB client with Tethys. The
Cookbook has a list of common MATLAB functions as well as numerous examples for getting started.

There are two subfolders within the MatlabClient folder: db and vis. The functions under db are related
to accessing the database while the functions in the vis directory provide support for visualizing data.

Once MATLAB has started, add the db and vis directories to your path. This can be done using MATLAB’s
pathtool or addpath commands. The pathtool command allows you to save the path for the next time
you start MATLAB. Alternatively, addpath commands can be put in the startup.m file which is executed
when MATLAB starts. See the MATLAB documentation for details.

Once the path is set, use dbInit() to create a database query handler:

>> query_h = dbInit();

We will use query_h as the name of our query handler throughout this section, but any variable name is
fine. The database query handler is the first step in using Tethys in MATLAB and will allow the user to
query the Tethys metadata database that has been created on the server and to use the Tethys methods
to perform spatial and temporal analyses. While the Tethys interface to MATLAB permits the user to
query the Tethys server using XQuery, MATLAB functions for a number of common queries have been
written to generate the queries and parse the results into structures that are easily usable within
MATLAB.

For any function, one can type “help” or “doc” followed by the function name. As an example, in the
MATLAB command window, typing:

doc dbInit

brings up the help browser with the following text:

 dbInit(optional_args)
 Create a connection to the Tethys database.
 With no arguments, a connection is created to the default server
 defined within this function.

 Optional args:

Tethys Metadata Page 41

 'Server', NameString - name of server or IP address
 Use 'localhost' if the server is running the
 same machine as where the client is executing.
 'Port', N - port number on which server is running
 'Secure', false|true - make connection over a secure socket

 Returns a handle to a query object through which Tethys queries
 are served.

If you were running your server in unencrypted mode (secure-socket-layer=false) on the same computer
as your MATLAB client, you would type:

query_h = dbInit('Server', 'localhost', 'Secure', false);

to obtain the query handler. Many functions in the Tethys MATLAB client take optional arguments that
are specified by keyword (e.g., 'Secure') and value (e.g., false) pairs. Again, one can see the optional
arguments by using help or doc followed by the function name in the MATLAB command window.

Once the query handle has been created, it is possible to perform a variety of tasks.

3.4.4.1 Uploading/Removing data
The MATLAB client provides an interface for submitting documents to the database. This process is
described both in the MATLAB Cookbook and the Data Import documentation. Removal of documents i

3.4.4.2 Querying the database
All MATLAB queries to the database using the Tethys methods require a query handler to be created.
While the query handler is capable of querying XML directly using the XQuery language, a number of
common queries have been packaged into functions that can be used without any knowledge of XQuery.

Functions to access the database start with the prefix db. Most of these functions require the query
handler returned from dbInit as their first argument. Optional arguments let users specify criteria such
as spatial or temporal information, species or call types of interest, etc. Queries can be made using a
single value ('Site', 'M') or using a list ('Site', {'M', 'N'}) as desired.

Below are some examples of functions you can use to query Tethys. See the Tethys-MatlabCookbook for
a more extensive list and examples.

Deployments:

• dbGetDeployments() – Retrieves information about deployments.

Detections:

• dbGetEffort() – Retrieves information about effort to detect species.
• dbGetDetections() – Retrieves start and end times of detections meeting the specified criteria.

Localizations

Tethys Metadata Page 42

• dbGetLocalizationEffort() – Retrieves information related to efforts to localize or find the
direction of acoustic sources.

• DbGetLocalizations() – Retrieves localization information.

Environmental data:

• dbDiel() – Provides information about sunrise and sunset.
• dbGetLunarIllumination() – Provides information about lunar illumination percentage (without

taking into account cloud cover).
• dbERDDAPSearch() – Searches NOAA’s Environmental Research Division Data Access Program

(ERDDAP) servers to find an appropriate server for various oceanographic data such as ice
coverage over a specified spatial-temporal range.

• dbERDDAP() – Retrieves oceanographic data from a specific server.

3.4.4.3 Visualization
The functions for data visualization will produce a variety of plots. Some of the more commonly used
visualizations are:

• visLocalizations – Plot localizations on a map, requires MATLAB mapping toolbox.
• visLunarIllumination – Given the results of a lunar illumination query, add it to an existing plot.
• visPresence – Show presence/absence on a daily plot designed to make diel patterns apparent.
• visTracks – Plot WGS84 tracks on a map, requires MATLAB mapping toolbox.
• visWeeklyEffort – Show count of hours with detections on a weekly basis.

See the Tethys-MATLAB Cookbook for examples using this and other visualization function.

3.4.5 Python client
The Python client is designed primarily for administrative purposes and to provide low-level access (e.g.,
users writing their own XQueries). The tasks details below can all be invoked from the command line
and they all have the following options in common:

-h or --help Show a help message and exit.

--port Specify a port number (defaults to 9779).

--servertype Server transport layer type, do not set.

--server Server address (defaults to the name specified for the server during the installation
of clients).

When you open a command console, you will first need to change the directory to the folder where the
client is located (e.g., C:/Program Files/Tethys/PythonClient). You will then type the path to the
Python39 folder that contains python.exe followed by the python file you wish to run. For example, to
run checkpoint.py you would type:

pythonclient_path> python_path\python.exe checkpoint.py

Tethys Metadata Page 43

where
 pythonclient_path indicates the path to your PythonClient folder

python_path refers to the path to the Python39 folder that contains python.exe

3.4.5.1 Create a checkpoint
checkpoint.py is used for creating a checkpoint in the database. Checkpoints verify that any changes to
the database are in a stable state. The database automatically checkpoints itself each time it starts. See
section 4.1 for details on checkpoints.

3.4.5.2 Import documents
import.py provides a mechanism to import documents into a collection. Use of this client is described in
section Tethys Data Import manual.

3.4.5.3 Remove all documents
clear_documents.py removes all documents from a collection. A list of collection names to be cleared
are given, e.g.,

pythonclient_path> python_path\python.exe clear_documents.py Deployments SpeciesAbbreviations

Use with caution. The primary use for this command is for clearing out a collection prior to importing
from a database. As an example, the Scripps Whale Acoustics Lab stores instrument deployments in a
MySQL database. To update the Deployments collection, the collection is first cleared, then import.py is
used to import all of the deployments.

3.4.5.4 Remove a specific document
remove.py is used to remove a specific document from a specified collection. Document names are
either based on:

• the filename of the submitted data (without the extension) or

• a database name followed by an _ and a number. As an example, the Scripps Whale Acoustics
Lab imports deployments from the database HarpDB and the deployments are named
HarpDB_1, HarpDB_2, etc.

Example:

pythonclient_path> python_path\python.exe remove.py Deployments HarpDB_235

3.4.5.5 Shutdown the server
shutdown.py requests the server to exit. Queries in progress are handled and then the server will stop.

Example:

pythonclient_path> python_path\python.exe shutdown.py
Connecting to server: http://127.0.0.1:9779 plain text (UNSECURED)...
<Tethys> exiting </Tethys>

Tethys Metadata Page 44

3.4.5.6 Rebuild a collection
update.py is used for rebuilding collections from source documents that have already been submitted.
See the Data Import Manual section on adding documents that have been accidentally removed for
details.

3.4.5.7 XQuery from Python
client.py provides an example of how to use an XQuery from Python. Its purpose is to provide an
example for users who wish to write XQueries against the server without the need for MATLAB or Java.
For more details on XQuery, see section 3.4.6.

3.4.6 XQuery
XQuery is a language used to query XML databases. Walmsley’s (2006) book on XQuery provides an
excellent and complete introduction to XQuery and is recommend reading for people who wish to
become experts in XQuery. Many useful queries can be performed using the MATLAB client with no
knowledge of XQuery whatsoever. However, for users who wish to create complicated custom queries,
investing the time to learn XQuery will be beneficial. Our goal in this section is to provide a gentle and
incomplete introduction to XQuery, deferring advanced materials to other sources such as Walmsley’s
book.

It is helpful to run queries interactively when designing them, and the MATLAB client provides a good
way to do this. Let’s walk through a few examples of more basic queries using the XQuery methods in
the MATLAB environment. The MATLAB client is described in section 3.4.4.

From the MATLAB command window, we first need to define a query handler:

query_h = dbInit('Server', 'localhost');

Now that a query handler exists, we can query our metadata database. Note that the query handler is an
instance of the JavaClient’s dbxml.Queries class and has a variety of methods (function calls) that are
available to it and reported in the JavaClient documentation.

Two methods that are important for querying a Tethys database are Query and QueryTethys. Let us first
consider how we might count the number of ad-hoc detections in a Tethys database. In a database of
humpback whale detections, we might have detected other species in addition to the humpbacks even
though our main objective was to detect humpbacks. While we might still be interested in recording
these other detections, we would record them as off-effort detections as we were not looking for them
systematically. In Tethys, we report these detections as OffEffort detections.

We will use query_h.Query() to execute the XQuery. Let us begin by defining the XQuery. The first step is
to declare a query namespace. The namespace will let the query handler know that the data we are
querying conforms to the Tethys schemata. The first line of the query is:

‘declare default element namespace “http://tethys.sdsu.edu/schema/1.0”;

Tethys Metadata Page 45

This is followed by the query itself. In this simple example, we will ask the system to count the number
of off-effort (ad-hoc) detections. We use the XQuery function count and a so-called path statement that
traces the elements in the Detections collection from the root element Detections down to the off-effort
detections:

count(collection("Detections")/Detections/OffEffort/Detection)')

If you wish to explore the Tethys schemata, you may wish to read the advanced query section of the
Tethys Web Client documentation. Combining this declaration and the path, we can execute the query
in MATLAB as follows:

query_h.Query(['declare default element namespace "http://tethys.sdsu.edu/schema/1.0";', ...

'count(collection("Detections")/Detections/OffEffort/Detection)'])

Declaring the default element namespace is a common operation, and using the QueryTethys method
will automatically add the declaration for you. The following is an equivalent query:

query_h.QueryTethys('count(collection("Detections")/Detections/OffEffort/Detection)')

Another example would be if we wanted a list of all the species that have effort in the database. Again,
we first need to have a query handler. Next, we create a namespace, and then execute a query that
reports the species for which we have effort. This path is enclosed in an XQuery function, distinct-values,
that returns each species for which we have effort only once:

Query_h.QueryTethys(...
 'distinct-values(collection("Detections")/Detections/Effort/Kind/SpeciesId)')

3.4.6.1 Advanced queries – Example 1
In addition to the simple queries described above, complex queries are possible using Tethys. In this
example, we would like a list of scientific names for all of the species for which we have effort. However,
our Detections documents encode species names as an ITIS taxonomic serial number (TSN). Fortunately,
the ITIS collection can let us associate the scientific name with the TSN.

We could write a FLOWR3 expression to match the TSN with the species name, but Tethys has a number
of library functions that will let us do this with minimal effort.

First, we will declare our namespace:

declare default element namespace "http://tethys.sdsu.edu/schema/1.0";

Next, we need to import the software library containing the function that will map from a TSN to
a Latin species name, which the ITIS database refers to as a completename.

import module namespace lib="http://tethys.sdsu.edu/XQueryFns" at "Tethys.xq";

3 Due to the keywords for, let, order by, where, and return, queries in the XQuery language are frequently
referred to as FLOWRs (pronounced flowers)

http://tethys.sdsu.edu/XQueryFns

Tethys Metadata Page 46

In the previous examples, the results of our queries were displayed on the screen. Here we will
instead save the query returns as a variable, called $tsns.

let $tsns := distinct-values(collection("Detections")/Detections/Effort/Kind/SpeciesId)

$tsns will be the list of each SpeciesId for which we have effort. Next, we loop through each of
the TSNs stored in $tsns and use the function tsn2completename to perform the mapping. We
prefix tsn2completename with the namespace abbreviation lib that we defined in our module
import.

for $tsn in $tsns
 return lib:tsn2completename($tsn)

where $tsn is a variable consisting of the scientific names, $tsns is the output of our previous query, lib
refers to the software library created containing the scientific names for all species, and
tsn2completename is the Tethys method to match SpeciesId or another species format with scientific
names.

The final query is as follows:

declare default element namespace "http://tethys.sdsu.edu/schema/1.0";
import module namespace lib="http://tethys.sdsu.edu/XQueryFns" at "Tethys.xq";
let $tsns := distinct-values(collection("Detections")/Detections/Effort/Kind/SpeciesId)
for $tsn in $tsns
 return lib:tsn2completename($tsn)

This text can be placed in a string and executed via the query handler. Note that the QueryTethys
method not only declares the default element namespace, but also the declaration for the library
namespace. As such, if the QueryTethys method is used instead of Query, the first two lines could be
omitted.

3.4.6.2 Advanced queries – Example 2
Let’s form a query to find all deployments where effort has been put into finding Pacific white-sided
dolphin clicks:

declare default element namespace "http://tethys.sdsu.edu/schema/1.0";

<Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
{
for $detections in collection("Detections")/Detections
 (: 180444 is the Pacific white-sided dolphin :)
 (: We'll see how to find this automatically later :)
 where $detections/Effort/Kind/SpeciesId = 180444
 return
 <Effort>
 {$detections/DataSource}
 </Effort>
}
</Result>

http://tethys.sdsu.edu/XQueryFns

Tethys Metadata Page 47

XQueries return XML documents. One strategy in designing XQueries is to design a document skeleton
and have XQuery fill in portions of it. Tethys provides a generic document element called <Result>
whose schema permits any valid XML, and we note that the XML is bracketed by:

<Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
…
</Result>

The xsi namespace declared in <Result> is not mandatory, but it will prevent the children of <Result>
from having the xsi namespace in each element. The namespace is present in Tethys documents as they
reference a schema, which is part of the http://www.w3.org/2001/XMLSchema-instance namespace. To
distinguish the XQuery code from the XML document, curly braces { } are used and we see that { }
brackets the XQuery code in our query.

Let us turn our attention to the XQuery code itself which we number for convenience:

1. declare default element namespace "http://tethys.sdsu.edu/schema/1.0";
2. for $detections in collection("Detections")/Detections
3. (: 180444 is the Pacific white-sided dolphin :)
4. (: We'll see how to find this automatically later :)
5. where $detections/Effort/Kind/SpeciesId = 180444
6. return
7. $detections/DataSource

Let us begin by examining portions of line 2. The path expression (referred to as an XPath),
collection("Detections")/Detections, returns a list of documents in the collections detection whose
top-level element is <Detections>. This should be every document in the Detections collection, but if
there were documents in the Detections collection that started with a different element, they would not
be included. The for loop will assign the variable $detections to each one of these documents at the
<Detections> level. All XQuery variables start with a dollar sign ($).

If we wished to access the Description element for a group of detections, we could do so with
$detections/Description. The optional where clause allows us to restrict, or filter, the selection of
documents based on their contents. In this case, we are looking for Pacific white-sided dolphins, TSN
180444, and will see later how we could write a query for something less obscure, such as using the
common name “Pacific White-sided Dolphin” or the scientific name “Lagenorhynchus obliquidens.” This
is also noted in the comments of lines 3 and 4. Text between a (: and :) is interpreted as a comment and
is ignored.

To restrict ourselves to detections where analysts or algorithms were searching for any type of call
associated with this species, we construct an XPath from $detections to the species identifier. The path
is based on the structure and meaning of the schema (see section 5). In this case we specify the kind of
effort to which we are restricting ourselves with an equality check: $detections/Effort/Kind/SpeciesId
= 180444 (line 5).

For each document that remains after our filter for Pacific white-sided dolphins, we wish to return
information about the data source. This is indicated by the return statement on line 6 which is followed

Tethys Metadata Page 48

by either an XQuery expression or XML. In the above example, it is followed by an XQuery path
expression that states that the DataSource element and its children which specify instrument
deployment (DeploymentId) or instrument deployment group (EnsembleId) should be returned. A
sample output might look like the following:

 <DataSource>
 <DeploymentId>SOCAL38-M</DeploymentId>
 </DataSource>
 any other entries…

Alternatively, we could have placed XML in the return statement and the lines following the return could have
read:

 <Effort>
 {$detections/DataSource}
 </Effort>

When the return contains XML, the curly-brace markers { and } are used to indicate that items between
the markers are processed as query code. Here, the XQuery path $detections/DataSource is used, but
any XQuery expression is valid. The result would be similar, except each <DataSource> element would be
enclosed within an <Effort> element.

3.4.6.2.1 Let statements and library modules
We extend the previous query with the introduction of other variables and a library function call to
eliminate the need to know the TSN for Pacific white-sided dolphins. We also wrap the query in an
element called Result. The Result element has a namespace attribute (xmlns:xsi) that indicates that the
results from a schema definition. This is optional and does not affect correctness, but it will make the
results more readable.

As the XQuery is nested inside the XML element Result, curly braces are used to indicate that the text
between the Result and </Result> is XQuery to be executed and not XML data. Variables can be
introduced with the let statement. Here, we use a library function to look up the TSN from the Latin
species name and assign it to a variable:

1. declare default element namespace "http://tethys.sdsu.edu/schema/1.0";
2. import module namespace lib="http://tethys.sdsu.edu/XQueryFns" at "Tethys.xq";

3. <Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
4. {
5. (: Find TSN from species name :)
6. let $id := lib:completename2tsn("Lagenorhynchus obliquidens")
7. for $detections in collection("Detections")/Detections
8. where $detections/Effort/Kind/SpeciesId = $id
9. return
10. <Effort>
11. {$detections/DataSource}
12. </Effort>
13. }
14. </Result>

Tethys Metadata Page 49

This XQuery returns the same values as the previous ones but adds an additional import to access the
library module in the namespace http://tethys.sdsu.edu/XQueryFns (line 2) which is given the
abbreviated name lib. The lookup is performed by function completename2tsn in line 6 which will map
the species name to a TSN if it is in the ITIS collection. The value is then substituted into the equality of
line 8. The results from this query will be identical to the previous one.

A description of the other functions in the module can be found in section 7. Most of the functions are
useful for translating back and forth between TSNs and species names, common names, or local
abbreviations.

3.4.6.2.2 Nested loops and conditional statements
We continue this with a slightly more complicated query which finds the detections themselves in
documents where we know that we are looking for Pacific white-sided echolocation clicks. Note that we
could have looked for detections in every Detection document, but it is more efficient to restrict our
search to places where detection effort has been made as there should not be any on-effort detections
in any document where no effort has been placed in finding them.

1. declare default element namespace "http://tethys.sdsu.edu/schema/1.0";
2. import module namespace lib="http://tethys.sdsu.edu/XQueryFns" at "Tethys.xq";

3. <Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
4. {
5. let $id := lib:completename2tsn("Lagenorhynchus obliquidens")
6. for $detections in collection("Detections")/ty:Detections
7. where $detections/Effort/Kind/SpeciesId = $id
8. return
9. for $d in $detections/OnEffort/Detection
10. where $d/SpeciesId = $id and $d/Call = "Clicks"
11. return if ($d/Parameters/Subtype)

then $d
else ()

12. }
13. </Result>

This example begins in a similar manner to the first one but begins to differ in what is returned starting
at line 8. The return value is actually a nested XQuery. Once we have identified a document where there
was effort to find Pacific white-sided dolphins, we look through the on-effort detections (line 9) and
then retain calls from Pacific white-sided dolphin echolocation clicks with a where clause (line 10). As
this is a nested XQuery, it also needs a return value. Rather than returning every detection, we wish to
only return echolocation clicks that have a subtype associated with them. In Soldevilla et al. (2008), we
identified two types of echolocation clicks which we called subtypes A and B. We store this distinction in
Tethys by adding a <Subtype> element as a child of <Parameters>.

The if statement on line 11 is true if there is a Parameters/Subtype element relative to the current
detection, $d. When this is true, the detection is returned; otherwise, the empty sequence is returned,
which does not change the output. The following shows a sample output from this query:

<Result xmlns="http://tethys.sdsu.edu/schema/1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 … many detections omitted …

Tethys Metadata Page 50

 <Detection>
 <Input_file>H:\SOCAL44N_disk06\SOCAL44N_disk06_5s_100Hz.ltsa</Input_file>
 <Start>2011-08-17T02:58:12.500Z</Start>
 <End>2011-08-17T03:18:02.500Z</End>
 <Event>02/28/12 13:05:56</Event>
 <SpeciesId>180444</SpeciesId>
 <Call>Clicks</Call>
 <Parameters>
 <Subtype>A</Subtype>
 </Parameters>
 </Detection>
 <Detection>
 <Input_file>H:\SOCAL44N_disk07\SOCAL44N_disk07_5s_100Hz.ltsa</Input_file>
 <Start>2011-09-15T02:49:27.500Z</Start>
 <End>2011-09-15T03:18:17.500Z</End>
 <Event>03/02/12 10:58:35</Event>
 <SpeciesId>180444</SpeciesId>
 <Call>Clicks</Call>
 <Parameters>
 <Subtype>A</Subtype>
 <UserDefined>
 <peak_1_low>21700.0</peak_1_low>
 <peak_2>27700.0</peak_2>
 <peak_3_high>38400.0</peak_3_high>
 </UserDefined>
 </Parameters>
 </Detection>
</Result>

Although not shown here, the order by clause can be used to sort the results and is placed just before
the return clause.

3.4.7 Case study: Northeast Fisheries Science Center Minke Boing analysis
NOAA’s NEFSC conducted an analysis of Minke boing calls where received levels were estimated for
individual pulses near the beginning, middle, and end of each call (Table 2). The Detection element in
the Detections schema (set of rules indicating valid syntax) has methods to support recording
nonstandard data. In the Parameters section, there is an element called UserDefined. This is an example
of a user definable field that can have arbitrary data including nested XML elements that can be queried
like any other element. All of the methods to import data into Tethys support arbitrary children being
added to user defined elements. See the Data Import Manual for examples of user definable fields.

This is where XML can shine by allowing both standard and non-standard elements to be mixed. The
schema for detections indicates that any set of elements are permitted under UserDefined, permitting
extensibility where it is needed while preserving consistency elsewhere.

The source material contains multiple lines, and some of the information is associated with the entire
call (average received level) while other parts are pulse specific. This can be represented via XML with
the following structure which describes the first Boing in the table:

 <Detection>
 <Start> … [field values represented by …] </Start>
 <End> … </End>
 <SpeciesId> … </SpeciesId>
 <Call> Boing </Call>

Tethys Metadata Page 51

 <Parameters>
 <ReceivedLevel_dB> 101.841103727 </ReceivedLevel_dB>
 <MinFreq_Hz> 45.6 </<MinFreq_Hz>
 <MaxFreq_Hz> 169.1 </MaxFreq_Hz>
 <UserDefined>
 <pulse>
 <number> 1.0 </number> <!-- Call number -->
 <signal>
 <Selection> 5.0 </Selection>
 <end_s> 36988.673 </end_s>
 <rms_amp_dBre1uPa> 103.684142949 </rms_amp_dBre1uPa>
 <f_rms_amp_u> 139.1 </f_rms_amp_u>
 <tag> pt1_A </tag>
 <start_s> 36988.374 </start_s>
 <Channel> 2.0
 </Channel>
 <ambient>
 <low_Hz> 47.6 </low_Hz>
 <Selection> 2.0 </Selection>
 <end_s> 37010.763 </end_s>
 <rms_amp_dBre1uPa> 99.0726664225 </rms_amp_dBre1uPa>
 <f_rms_amp_u> 81.8 </f_rms_amp_u>
 <tag> pt1_A </tag>
 <high_Hz> 171.1 </high_Hz>
 <start_s> 37010.463 </start_s>
 <Channel> 2.0 </Channel>
 </ambient>
 </pulse>
 <!-- Other pulses omitted for brevity -->
 </UserDefined>
 </Parameters>
 </Detection>

The UserDefined element allows embedding arbitrary information such as whistle contour tracks, etc.

Tethys Metadata Page 52

Selection
Original/
Ambient Channel

Begin Time
(s)

End Time
(s)

Low
Freq
(Hz)

High
Freq
(Hz) Tag

F-
RMS
Amp
(u)

RMS
Amplitude
(dB re 1
µPa)

Subtracted
RMS Amp
(dB re 1
µPa)

Pulse
train

Average
RL

2 A 2 37010.463 37010.763 47.6 171.1 pt1_A 81.8 99.1 101.8 1 98.7
5 O 2 36988.374 36988.673 45.6 169.1 pt1_A 139.1 103.7
4 A 2 37011.004 37011.293 46.7 195.4 pt1_B 87.4 99.6 97.1
6 O 2 36998.247 36998.535 47 195.8 pt1_B 109.2 101.6
6 A 2 37011.471 37011.737 52.5 164.7 pt1_C 78.7 98.7 97.1
7 O 2 37009.577 37009.843 51.2 163.5 pt1_C 102.1 101.0
8 A 5 37294.504 37294.748 50 171.7 pt2_A 70.3 97.8 96.5 2 96.4
8 O 5 37276.193 37276.437 49.7 171.3 pt2_A 93 100.2

10 A 5 37294.914 37295.18 47.7 168 pt2_B 57.8 96.1 95.4
9 O 5 37283.932 37284.198 46.9 167.1 pt2_B 78.8 98.7

11 A 5 37293.887 37294.142 45.7 153.4 pt2_C 65.3 97.1 97.4
10 O 5 37293.255 37293.51 45.5 153.1 pt2_C 93.8 100.3

Table 2 - NOAA NEFSC Minke boing source level information. Information from pulse trains are measured near the beginning, middle, and end of each boing. Alternating
lines show measurements of energy during the pulse (original) and ambient background. The estimated received levels are given along with the average received level.

Tethys Metadata Page 53

4 Maintenance

4.1 Checkpoints
All database operations are made as transactions, which means that if the database dies in the middle of
an operation, it should not corrupt itself. A series of transaction log files are written to the databases’s
db directory as operations are conducted. Each time the Tethys server is started, it audits the log files to
verify that the database is in a consistent state (a checkpoint operation, that can also be requested
manually, see the PythonClient checkpoint.py). If anything is amiss, it uses the log files to restore the
database to a stable state with the last modification instructions either omitted or applied successfully.
After verification, the database is checkpointed, and the log files are moved into the db/verified_logs
directory. The verified logs can be periodically deleted to save disk space.

The database itself is stored in a set of files with the same names as the collections and a set of files that
start with __db. followed by a number. The __db files are a relational database decomposition of the
XML. This is handled automatically.

4.2 Backups
Your database should be backed up from time to time. The location of the database files is reported
when the server first starts. Here is an example of the first few lines of output from the server:

[03/Apr/2023:21:29:36] Welcome to Tethys, 3.0
Examining logs in C:\Users\TethysUser\Tethys\Databases\demodb\db to verify that database is
correct.
This may require a long time (e.g. 1 h) when the logs have not been verified recently
 or a large changes have been made to the database
Log processing started at 2023-04-03 21:29:36.484990
Cache size set to 1.00 GB
Log processing complete. started at: 2023-04-03 21:29:36.484990 elapsed 0 days 00:00:00.442662
Checkpointing database C:\Users\TethysUser\Tethys\Databases\demodb\db... checkpoint complete
Cache size set to 1.00 GB
BSDDB environment initialized
Starting DB XML in transactional mode
Enabling 128 GB query cache at C:\Users\TethysUser\Tethys\Databases\demodb\diskcache
[03/Apr/2023:21:29:41] ENGINE Bus STARTING
[03/Apr/2023:21:29:41] ENGINE Started monitor thread 'Autoreloader'.
[03/Apr/2023:21:29:41] ENGINE Serving on http://0.0.0.0:9779
[03/Apr/2023:21:29:41] ENGINE Bus STARTED
[03/Apr/2023:21:29:41] Web interface at http://tethys.sdsu.edu:9779/Client

In addition to backing up the database itself (the db folder), the source material used to construct the
database should be backed up. This consists of spreadsheets, XML documents, and any media files that
are referenced from the XML. Tethys keeps a copy of everything that you have submitted that is not
from a database in the source-docs folder contained in the resource directory. It is assumed that other
databases have their own backups. Backing up source material is critical. Should the database ever
become completely corrupted or undergo major revisions, this will allow you to regenerate it with very
little effort.

Tethys Metadata Page 54

4.3 Help! My database has fallen and cannot get up!

4.3.1 Server will not start / Server window disappears
Double-clicking on the Tethys batch file should start the server. However, if the server fails, the window
will disappear. The first step in troubleshooting is to open a command window and change the directory
to the folder where the server was started; for example:

cd c:\Users\Tethys\metadata

Then start Tethys using the batch file in the directory:

tethys.bat

This will let you see the error. See below how to handle “database corrupted” messages. If there are
permission problems, the account executing Tethys may not have write privileges for the folders
containing the database.

4.3.2 Database is not responsive
If you are running the database from a Windows command line terminal, and you press a key in the
window, all input/output to the database may be paused, effectively blocking all operations. Making the
window active by clicking on it and pressing escape will remedy this situation. When you run the
database as a service this is not an issue.

Very large queries to external services take time to process. There are three components that drive how
fast local data queries are processed:

1. Whether or not the data have been indexed. Most database elements that are frequently used
to select data are indexed.

2. The speed and congestion of the network over which they are being transported.
3. The amount of time needed to parse the XML into a usable format at the database client. This

amount of time can be greatly reduced by having queries only return the information that is
needed rather than everything in a record.

4.3.3 Database is corrupted
IMPORTANT: If for some reason you start a second instance of the database on the same port, you will
receive a message that the database is corrupted even though everything is fine. In this case, simply kill
both processes and restart.

In many cases, restarting the database will allow the automatic recovery of the database. However, if
things should become damaged beyond repair (we have yet to see this), you can use the dbxml recovery
program db_recover which is in the Tethys/dbxml-6.1.4/bin folder. Open a console window and cd to
the appropriate Tethys directory, then run it (you may need to change this):

cd C:Users\Tethys\metadata\db
“C:\path to Tethys\Tethys\dbxml-6.1.4\bin\db_recover”

The db_recover program can also be run with a –c option for “catastrophic” database recovery. Finally,
should all else fail, remember that Tethys retains the source documents submitted to the database in
the source-docs directory and the update_documents.py Python script described in the data import

Tethys Metadata Page 55

manual can be used to reinsert them into a blank database. Documents derived from an external
database such as MySQL or Access are not stored; it is assumed that you can use any of the document
submission methods described in the data import manual to reinsert these.

5 Appendix: XML Schema Diagrams
The following sections of this manual provide an overview of the types of data that appear in each
collection. Frequent use is made of XML schema diagrams which show the structure of the XML data.
While most of the details of the XML schema need not be understood by the casual reader, a few
notations are worth describing:

 denotes a sequence of elements that must appear in the order that they appear,

is used to represent a choice, only one of the child elements (or groups of elements) can be used.

Mandatory elements are denoted by dark lines whereas optional elements have light lines. Elements
that may be repeated are indicated by labels indicating how many times they can be repeated. As an
example, 1 …∞, indicates that an element must occur at least one time.

The full Tethys schema can be accessed at https://tethys.sdsu.edu/documentation/.

5.1 Calibration
Calibration documents record information about the calibration of an instrument (Figure 14). These
records can be linked to instruments used during specific deployments. Every Calibration document
must include an identifier of the instrument being calibrated (Id), the date and time the calibration
occurred (TimeStamp), the Type of calibration (hydrophone, preamplifier, or end-to-end), details on the
calibration quality (QualityAssurance), a reference intensity for the measurements
(IntensityReference_µPa), a list of corresponding frequencies (Hz) and responses (dB;
FrequencyResponse), and details on who is responsible for calibration metadata (MetadataInfo).

Tethys Metadata Page 56

Figure 13 – Calibration schema for recording information about instrument calibration. Dark lines indicate required
elements; light lines indicate optional elements.

Tethys Metadata Page 57

The MetadataInfo element (Figure 15) requires details on the individual responsible for the calibration
metadata (Contact), the Date the metadata was last updated, and information about how often the
data are updated (UpdateFrequency).

Figure 14 – MetadataInfo is a required element in the Calibration schema to provide details on who is responsible for the
calibration record.

The QualityAssurance element (Figure 16) requires details about the Quality of the calibration (e.g.,
whether it is unverified, valid, or invalid) and a Comment on the Quality.

Figure 15 – QualityAssurance is a required element in the Calibration schema to provide details on the quality of the
calibration.

Although not required, Process allows for additional details about the calibration process used (Figure
17). Required elements include the name of the Software used and the Parameters used to execute the
algorithm. A description of the method, the software version, and any supporting software can also be
included.

Tethys Metadata Page 58

Figure 16 – Process is an optional element in the Calibration schema to provide details of the calibration process used.

Additionally, information about the responsible party (ResponsibleParty) can be provided, including
names and contact information (Figure 18), as well as information about transducer sensitivity
(Sensitivity_dBV, Sensitivity_V, Sensitivity_dBFS) and a sensitivity reference (SensitivityReference).

Figure 17 – ResponsibleParty is an optional element in the Calibration schema to provide details on who performed the
calibration.

5.2 Deployment
Deployment records are used to track how an instrument is configured during the time that it is
deployed. If the instrument is not fixed to a single point, a trackline is added showing the instrument’s

Tethys Metadata Page 59

position at various points during the deployment. Note that while deployments describe the current
configuration of the equipment, the deployment record is not designed to describe the instrument itself.
It does however provide sufficient information to identify the instrument, whose characteristics may be
stored in a separate database.

Every deployment document must include the following elements (Figure 19):

• Id – a unique identifier for the deployment
• Project – a project name associated with the deployment, often related to a geographic region.

As an example, at the Scripps Whale Acoustics Lab, we use SOCAL for our high frequency
acoustic recording package (HARP) deployments in Southern California.

• DeploymentId – a number used to identify the nth deployment with respect to a project (or if
you prefer, with respect to a site or cruise).

• Platform – the type of platform on which the instrument is deployed (e.g., mooring or tag).
• Instrument – the Type of instrument used in the deployment (e.g., HARP, EAR, D-Tag) as well as

its unique identifier (InstrumentId)
• SamplingDetails – information about the recordings on each channel
• Data – information about where the acoustic data are stored. Can also contain data collected

during the deployment such as longitudes and latitudes, pitch, roll, etc.
• DeploymentDetails – information about the deployment location and time
• Sensors – the types of sensors on the instruments (i.e., audio, depth, or other)

Tethys Metadata Page 60

Figure 18 – Deployment schema for recording information about instrument deployments. Dark lines indicate required
elements; light lines indicate optional elements.

Tethys Metadata Page 61

The SamplingDetails element (Figure 20) requires information about the recordings on each channel
including the ChannelNumber and SensorNumber, the Start and End time of the recording, and the
Sampling rate. There is also the option to include information about Gain and DutyCycle.

Figure 19 – The SamplingDetails element within the Deployment schema contain information about the recordings on each
channel during the deployment.

The Data element (Figure 21) references where to find the data itself. This element requires an Audio
Uniform Resource Indicator (URI), which can be a formal identifier of a data set, such as a digital object
identifier (DOI). When formal URIs are not available, this should be any sort of string indicator as to
where the physical data resides, such as a serial number or filing code. The locations of Processed and
Raw data can also be included but are not required. There is also the option to include information
about a track line (Tracks) if necessary.

Tethys Metadata Page 62

Figure 20 – The Data element within the Deployment schema contains information about the location of the data from the
deployment.

The DeploymentDetails element (Figure 22) requires information about the location of the deployment
(Longitude and Latitude), the time the instrument was deployed (TimeStamp) and the time the
recording started or stopped (AudioTimeStamp). Optional details include the instrument elevation
(ElevationInstrument_m) and depth (DepthInstrument_m), the elevation at the deployment location
(Elevation_m), the Vessel from which the deployment was made, and contact information for the
person or party responsible for the deployment (ContactGroup). There is an optional RecoveryDetails
element that contains the same information as DeploymentDetails but for instrument recovery. When
recovery details are available, it is highly recommended to include them as database users may use
these fields for computing deployment duration.

Tethys Metadata Page 63

Figure 21 – The DeploymentDetails element within the Deployment schema contains information about where and when a
deployment occurred.

Tethys Metadata Page 64

The Sensors element (Figure 23) describes information about the types of sensors that are associated
with the deployment. There are currently elements to describe Audio and Depth sensors as well as an
extendable generic Sensor to accommodate other sensor types. Each sensor has a geometry relative to
the platform, a name and description, and sensor identifiers that can be used to identify specific pieces
of equipment. This information can be used to retrieve information such as calibration data for
equipment from a separate instrument database which would be exterior to Tethys.

Figure 22 – The Sensors element within the Deployment schema describes the types of sensors associated with a
deployment.

Although not required, further information about the deployment can be included such as an alternative
description for the deployment (DeploymentAlias), a Site name, which permits a name to be associated
with the area in which the instrument is deployed, an alternative name for the deployment location
(SiteAlias), the name of the Cruise the deployment was a part of, the geographic Region in which the
deployment occurred, and information about the party responsible for the deployment record
(MetadataInfo; see Figure 15). QualityAssurance allows for the specification of data quality (Figure 24).
In most cases, all data retrieved should begin with a single Quality element. The Category should be
"unverified" until the data has been examined, and the Start and End elements would specify the entire
deployment. Later, once the data has been inspected, quality assurance can be specified for different
time and/or frequency ranges, marked with their respective categories: good, compromised, or
unusable.

Tethys Metadata Page 65

Figure 23 – The optional QualityAssurance element within the Deployment schema allows for the inclusion of details about
the quality assurance process.

5.3 Detections
The Detections schema contains three primary types of information: information describing the
detection process and data on which the process was performed, a specification of the effort, and the
detections themselves.

Required elements in the Detections schema include the following (Figure 25):

• Id – a unique identifier for the detection document
• DataSource – an identifier for a specific deployment (DeploymentId) or a set of deployments

that have been grouped together in a logical manner, which is referred to as an ensemble
(EnsembleId).

• Algorithm – details on the algorithm that was used to perform the detections. This element
contains the same information as the Process element in the Calibration schema (Figure 17). It is
important that this element is filled out accurately to be able to compare or reproduce results.

• UserId – identification of the user that submitted the detection document
• Effort – the span of time over which events were searched for in the specified deployment or

ensemble and the kinds of events of interest.
• OnEffort – a collection of individual detections

Tethys Metadata Page 66

Figure 24 – Detection schema for recording information about detections. Dark lines indicate required elements; light lines
indicate optional elements.

Tethys Metadata Page 67

The Effort element describes the span of time over which events were searched for in the specified
deployment or ensemble and what kinds of events are of interest (Figure 26). Required elements include
the Start and End times of the effort and the Kind of effort, which includes a SpeciesId and Granularity.
SpeciesId is taken from the Integrated Taxonomic Information System (ITIS; www.itis.gov). For
anthropogenic events such as ship noise, we typically attribute the species as Homo sapiens. To denote
calls when the species is not well known, a higher-order label can be used. As an example, if an
echolocation click could not be contributed to a specific species, one could record the SpeciesId using
the order label of Odontoceti. Granularity is used to indicate how often detections are recorded. Valid
parameters are call, encounter, and binned, which represent the annotation of individual calls, the
beginning and end of a set of calls, and the presence of calls within a given time interval, respectively.
When binned is selected, the attribute BinSize_min is used to indicate how often (minutes) the
presence is reported. In the unlikely chance that the first bin does not start at the beginning of the
analysis effort, attribute FirstBin_Start indicates the timestamp of the first presence/absence bin. When
Granularity is encounter, attribute EncounterGap-min indicates the gap between calls in minutes before
subsequent detections are recorded as a new detection. The Effort element can optionally include
details on any gaps in analysis effort (AnalysisGaps) and a reference for any dB measurements
(dBReferenceIntensity_µPa).

Figure 25 – The Effort element within the Detection schema captures the timespan and types of events that were
investigated.

http://www.itis.gov/

Tethys Metadata Page 68

The OnEffort and OffEffort elements describe the detections themselves. Detections recorded in the
OnEffort section represent systematic detections corresponding to the Algorithm and Effort
specifications (Figure 27). Ad-hoc detections from non-systematic effort must be placed in the OffEffort
element. The separation of these two types of detections permits valid inference. A small number of ad-
hoc detections do not imply that a species was rarely present, but rather that we happened to notice it
on a few occasions. Within the OnEffort and OffEffort elements, a sequence of 0 or more Detection
elements are used to specify events.

For any Detection element, a Start and SpeciesId must be included to denote the time at which the
event started and the species that was detected, respectively. There are many optional elements that
are well described by the comments in the schema and we will discuss only a few in further detail. When
the effort is binned, the Start time should ideally be the start time of a call within the bin. The End time
of calls reported as binned detections is optional. The Parameters element can be used to describe
characteristics of the call. A number of common parameters are included, but Tethys users can define
their own parameters as well in a UserDefined section. The Image and Audio elements permit the user
to store an image or audio sample of the event. These samples are submitted with the Detections
document and can be retrieved from the database.

Tethys Metadata Page 69

Figure 26 – The OnEffort element within the Detection schema is where individual detections are recorded.

Optional elements in the Detection schema include a Description (a high-level textual overview of the
detection process, consisting of Objectives (e.g., find every call produced by a rare species), Abstract,
and Method elements, which can be text or URLs; Figure 28), a description of any quality assurance
checks and the responsible party (QualityAssurance), detections that were discovered OffEffort (i.e.,

Tethys Metadata Page 70

they were not actively being looked for when they were found), and details about the party responsible
for the detection record (MetadataInfo; see Figure 15).

Figure 27 – The Description element with the Detection schema allows for details on the detection objectives and methods.

5.4 Ensemble
Ensembles provide a logical grouping of instrument deployments. This is most useful for large aperture
localization where separate instruments may be deployed individually, but the data within them are to
be treated as if they originated from a single instrument. Ensemble records consist of an ensemble
name (Id) that is a unique identifier for the ensemble and a sequence of Unit elements that describe
each instrument in the ensemble (Figure 29). Each Unit consists of a unit number (UnitId) that is unique
within the ensemble and a reference to a deployment document Id field (DeploymentId) to determine
the deployment associated with the unit.

Tethys Metadata Page 71

Figure 28 – Ensemble schema used to create logical groupings of instrument deployments. Dark lines indicate required
elements; light lines indicate optional elements.

While not a required element, ZeroPosition allows for the identification of a point to which relative
localizations can be referenced (Figure 30). This element requires values for Longitude and Latitude and,
optionally, instrument depth (DepthInstrument_m).

Figure 29 – The ZeroPosition element in the Ensemble schema describes a point that localizations can reference.

5.5 Event
Event documents record phenomena or events that are derived from other knowledge sources.
Examples include planned Naval exercises, whale watching cruises, pile driving, oil exploration,
earthquakes, etc. Information about the type of event and the time period during which it took place
are described here. Every Event (Figure 31) should include the name of the event (Name), a Description
that includes the Type of event and a contact person or group (ContactGroup), the event start time
(Start), and the event end time (End).

Tethys Metadata Page 72

Figure 30 – Event schema used to record phenomena derived from other knowledge sources. Dark lines indicate required
elements; light lines indicate optional elements.

5.6 Localization
The Localization collection is designed to organize information about localizations derived from multiple
hydrophones, whether from a single deployment or an ensemble of multiple instrument deployments.

Every localization document (Figure 32) must include a unique identifier for the document (Id), the
deployment or ensemble from which localizations were obtained (DataSource), a description of the
detection algorithm (Algorithm), information about the person or organization that generated the
metadata (ResponsibleParty), the UserId of the user that submitted the document, information about
the type of localization and when it occurred (Effort), and information about individual Localizations.

Tethys Metadata Page 73

Figure 31 – The Localization schema is used to record localizations of sources from multiple instruments. Dark lines indicate
required elements; light lines indicate optional elements.

The Algorithm and ResponsibleParty elements match those described for the Calibration schema
(Figures 18 and 19). Effort (Figure 33) includes information about when location information was looked
for (Start and End), the type of localization information produced (CoordinateSystem), and the type of

Tethys Metadata Page 74

localization (LocalizationType), which must be one of: Bearing, Ranging, WGS84, Cartesian, or Track.
ReferencedDocuments consists of a list of data products that were used in determining the
localizations. For example, if positions are obtained by looking for intersecting bearings from a fast-
moving ship, one would reference the bearing localization document. One would need to note that the
referenced document was of Type Localizations, the Id of the document containing the bearings, and an
arbitrary Index number. When referring back to the individual bearings that produced location
information, this Index would be used along with Event identifiers for each bearing.

Figure 32 – The Effort element in the Localization schema includes information about when the localization occurred.

The Localizations element consists of a series of Localization elements (Figure 34). Each Localization
contains a Timestamp indicating when the localization occurred and location information. Location
information consists of one of the following elements:

• Bearing – A horizontal and optional vertical angle, specified in degrees, as well as left right
horizontal ambiguity.

Tethys Metadata Page 75

• Ranging – Consists of the same information as a bearing but adds a distance to the localized
source.

• WGS84 – Contains a world geodetic system 1984 longitude and latitude reference, along with
optional elevation information.

• Cartesian – x_m, y_m, and optional z_m distances, specified in meters relative to the zero
location.

• Track – A series of associated positions and timestamps.

For all types of localizations, standard error may be specified in the same units. The localization can
also be optionally associated with an Event, a SpeciesId, References and QualityAssurance
information can also be provided. When References is present, a series of Reference elements
contain the referenced document Index (see Effort above) and an EventRef field that specifies a
detection or localization Event within the referenced document.

Figure 33 – The Localization element within the Localization schema provides details about individual localizations.

Tethys Metadata Page 76

Although not required, the Description and MetadataInfo elements include information about the
Objectives, Abstract, and Methods, and the creation of the localization record, respectively, as
described in the Detection and Deployment schemas (Figure 28 and Figure 15). The QualityAssurance
element allows for a Description and ResponsibleParty. The IntermediateData element can be used to
record information about the localizations that the user wishes to retain (Figure 35).

Figure 34 – The IntermediateData element within the Localization schema can be used to record information about the
localizations.

6 Appendix – BatchLogs
Operations that take a long time (e.g., rebuilding part of the database) may be performed as batch
operations. When this occurs, a message is given providing a batch log url that can be used to access the
log. To see any of the logs that are currently in the system, use a web browser (e.g., Chrome, Internet
Explorer) or another tool to visit the Tethys URL with the path BatchLogs. For example, if the server is
running on Tethys.me.edu port 9779 (the default port), use
http://Tethys.me.edu:9779/BatchLogs?html=true . The ?html=true is optional, but tells the browser to
format the result for human reading.

For example, one might see the following:

<BatchLogs>
 <InProgress>None</InProgress>
 <Complete>
 <Log>2018-05-10T01.06.13Z-a5794435.xml</Log>
 <Log>2018-05-10T01.06.40Z-fd6ffd54.xml</Log>
 <Log>2018-05-10T01.08.11Z-3042c318.xml</Log>
 </Complete>
</BatchLogs>

This states that all tasks are complete (InProgress – None) and lists three different batch logs. To see the
last one, we visit http://Tethys.me.edu:9779/BatchLogs/2018-05-10T01.08.11Z-
3042c318.xml?html=true:

<UpdateDocuments>
 <Collection>Detections</Collection>
 <ClearBeforeUpdate>False</ClearBeforeUpdate>
 <ReplaceExistingDocuments>False</ReplaceExistingDocuments>

Tethys Metadata Page 77

 <SummaryReport>
 </SummaryReport>
</UpdateDocuments>

This tells us that the batch job updated all Detections, existing documents were not removed first, and
any existing documents were not replaced. The SummaryReport shows what documents were added and
if any documents that we attempted to add failed.

7 Appendix: Tethys.xq Module Functions
XQuery allows one to define subroutines that can be called from within an XQuery. Tethys has provided
a set of such functions in a module called Tethys.xq. Currently, the main purpose of this module is to
provide conversion between ITIS taxonomic serial numbers, Latin species names, common species
names, and user-defined abbreviations. When converting to vernacular names, a language must be
specified. Currently, there are ITIS entries for the languages Afrikaans, Arabic, Chinese, Djuka, Dutch,
English, French, Galibi, German, Greek, Hausa, Hawaiian, Hindi, Icelandic, Japanese, Portuguese, and
Spanish. However, not all entries are supported equally, and English is by far the most complete with
some languages having only a few entries. When a vernacular name does not exist, the Latin name is
returned. In rare instances, ITIS contains multiple vernacular names for the same species. In such cases,
the first name is returned. As an example, Orcinus orca has both Killer Whale and orca as English
vernacular names, but the functions described here will always return Killer Whale as the English
vernacular name.

In order to use these functions, an XQuery must include the following line of code prior to FLWR query:

declare default element namespace "http://tethys.sdsu.edu/XQueryFns";

Note that we do not describe all functions in Tethys.xq, but rather the ones that Tethys users are most
likely to find helpful. Many of the client queries wrap the results of queries in one of these functions to
change TSNs into strings.

AbrrevationMapExists(abbrevmap) – Determines whether a specified abbreviation map exists.

e.g., lib:AbbreviationMapExists("NOAA.NMFS.v1") → true

abbrev2completename(abbrev, abbrevmap) – Converts an abbreviation to a Latin name.
The function accepts two strings, an abbreviation and the abbreviation map that is to be used.
e.g., lib:abbrev2completename("Oo", "NOAA.NMFS.v1") → Orcinus orca

abbrev2group(abbrev, abbrevmap) – Finds the group associated with a specific abbreviation.
Group is an attribute that is sometimes used with species to denote additional information. As an
example, there are currently a number of echolocation clicks that we believe are produced by
beaked whales, but it is unclear which species of beaked whale produced them. In the
NOAA.NMFS.v1 abbreviation map, different beaked whale encodings all map to the taxon
Hyperoodontidae and are distinguished by a Group attribute in the SpeciesId. Using abbrev2tsn for
abbreviation “BWC” will map to the TSN for Hyperoodontidae, but lib:abbrev2group("BWC",
"NOAA.NMFS.v1") will map to a group name. In this case, the group is also called BWC any string
would have been possible.

Tethys Metadata Page 78

abbrev2tsn(abbrev, abbrevmap) – Converts an abbreviation to a (taxonomic serial number) TSN.
The function accepts two strings, an abbreviation and the abbreviation map name.
e.g., lib:abbrev2tsn("Oo", "NOAA.NMFS.v1") → 180469.

completename2tsn(name) – Translates a Latin name to a TSN.
e.g., completename2tsn("Orcinus orca") → 180469.

tsn2completename(tsnnodes) – Converts a TSN to a “complete” (Latin) name.
tsnnodes must be a list of tsn nodes that each have an integer value, e.g. a SpeciesId from a
detection document.

tsn2vernacular(tsnnodes, language) – Converts a TSN to a vernacular name.
tsnnodes must be a list of tsn nodes that each have an integer value, e.g. a SpeciesId from a
detection document. The argument language must be a string for a language that is supported by
ITIS.

tsn2abbrev(tsnnodes, abbrevmap) – Converts a TSN to a user-defined abbreviation.
tsnnodes must be a list of tsn nodes that each have an integer value, e.g. a SpeciesId from a
detection document. Parameter abbrevmap must be the name of an abbreviation map that specifies
the set of abbreviations to be used. Like tsn2vernacular, the Latin name is returned if no
abbreviation is found.

vernacular2tsn(CommonName, Language) – Converts a common name to a TSN.
e.g., lib:vernacular2tsn("Killer Whale", "English") → 180469.

The following functions are intended to be called on result documents and can rewrite an entire XML
document. They are used by the client libraries to reformat results in a human-readable format.

SpeciesIDtsn2name(element) – Converts XML document from TSN species identifiers to Latin names.

SpeciesIDtsn2abbrev(element, abbrevmap) – Converts XML document from TSN species to the specified
abbreviation map.

SpeciesIDtsn2vernacular(element, language) – Converts XML document from TSN species to
vernacular names for the specified ITIS-supported language.

get-descendants(tsn) – Given a TSN rank, return XML representing all inferior ranks. Note that the rank
itself is not included. e.g., return all blue-whale (180528) subspecies, lib:get-descendants(180528)

<ranks xmlns="http://tethys.sdsu.edu/schema/1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <rank>
 <rankname>Subspecies</rankname>
 <tsn>612603</tsn>
 <completename>Balaenoptera musculus musculus</completename>
 <vernacular>
 <name language="English">Northern Blue Whale</name>
 </vernacular>
 </rank>
 <rank>
 <rankname>Subspecies</rankname>
 <tsn>612604</tsn>
 <completename>Balaenoptera musculus indica</completename>
 <vernacular>
 <name language="English">Great Indian Rorqual</name>
 <name language="English">Northern Indian Ocean blue whale</name>

Tethys Metadata Page 79

 </vernacular>
 </rank>
 <rank>
 <rankname>Subspecies</rankname>
 <tsn>612605</tsn>
 <completename>Balaenoptera musculus brevicauda</completename>
 <vernacular>
 <name language="English">Pygmy Blue Whale</name>
 </vernacular>
 </rank>
 <rank>
 <rankname>Subspecies</rankname>
 <tsn>612606</tsn>
 <completename>Balaenoptera musculus intermedia</completename>
 <vernacular>
 <name language="English">Antarctic blue whale</name>
 <name language="English">Southern Blue Whale</name>
 </vernacular>
 </rank>
</ranks>

get-descendant-tsn-list(tsn) – Like get-descendants, but returns a simple list of TSNs. This function is
useful for queries where we wish to query a taxonomic set such as any type of delphinid.

get-ancestors(tsn) – Given a TSN rank, return ranks describing the TSN and its chain of taxonomic
ancestors. When used with get-descendants, a complete set of paths from the root of the
taxonomic tree through the specified tsn and to all of its descendants can be found.

get-ancestor-tsn-list(tsn) – Like get-ancesotrs, but returns a simple list of TSNs.

8 References
Giorgini, J. D., Yeomans, D. K., Chamberlin, A. B., Chodas, P. W., Jacobson, R. A., Keesey, M. S., Lieske, J.
 H., Ostro, S. J., Standish, E. M. and Wimberly, R. N. (1996). JPL's On-Line Solar System Data
 Service. B. Am. Astron. Soc. 28, 1158.
Hoffman, C. (2012). How to Create Advanced Firewall Rules in the Windows Firewalldvanced Firewall,
 vol. 2012.
Joint W3C/IEFT URI Planning Interest Group. (2002). Uniform Resource Identifiers (URIs), URLs, and
 Uniform Resoruce Names (URNs): Clarifications and Recommendations. In Request for
 Comments series, eds. M. Mealling and R. Dennenberg), pp. 11: Internet Engineering Task
 Force.
Roch, M.A., Batchelor, H., Baumann-Pickering, S., Berchok, C.L., Cholewiak, D., Fujioka, E., Garland, E.C.,
 Herbert, S., Hildebrand, J.A., Oleson, E.M., Van Parijs, S.M., Risch, D., Sirovic, A. (2016).
 Management of acoustic metadata for bioacoustics. Ecol. Inform. 31, 122-136.
Soldevilla, M. S., Henderson, E. E., Campbell, G. S., Wiggins, S. M., Hildebrand, J. A. and Roch, M. A.
 (2008). Classification of Risso's and Pacific white-sided dolphins using spectral properties of
 echolocation clicks. J. Acous. Soc. Am. 124, 609-624.
Walmsley, P. (2006). XQuery. Farnham, UK: O'Reilly.

9 Licenses
Tethys uses components from the following vendors:

Tethys Metadata Page 80

9.1 Python
The Python programming language is used to bind various server components and is also used in the
Python client. Several Python libraries that are used also fall under this license: Python for Windows
extensions (pywin32),

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
 the Individual or Organization ("Licensee") accessing and otherwise using Python
 3.9.13 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
 grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
 analyze, test, perform and/or display publicly, prepare derivative works,
 distribute, and otherwise use Python 3.9.13 alone or in any derivative
 version, provided, however, that PSF's License Agreement and PSF's notice of
 copyright, i.e., "Copyright © 2001-2022 Python Software Foundation; All Rights
 Reserved" are retained in Python 3.9.13 alone or in any derivative version
 prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
 incorporates Python 3.9.13 or any part thereof, and wants to make the
 derivative work available to others as provided herein, then Licensee hereby
 agrees to include in any such work a brief summary of the changes made to Python
 3.9.13.

4. PSF is making Python 3.9.13 available to Licensee on an "AS IS" basis.
 PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
 EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
 WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
 USE OF PYTHON 3.9.13 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.13
 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
 MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.13, OR ANY DERIVATIVE
 THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
 its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
 of agency, partnership, or joint venture between PSF and Licensee. This License
 Agreement does not grant permission to use PSF trademarks or trade name in a
 trademark sense to endorse or promote products or services of Licensee, or any
 third party.

8. By copying, installing or otherwise using Python 3.9.13, Licensee agrees
 to be bound by the terms and conditions of this License Agreement

Tethys Metadata Page 81

9.2 Berkeley DBXML
The server’s database store is implemented using the freely redistributable BerkeleyDB XML which is
subject to the following terms:

The following is the license that applies to this copy of the Berkeley DB XML
software. For a license to use the Berkeley DB XML software under conditions
other than those described here, or to purchase support for this software,
please contact berkeleydb-info_us@oracle.com.

If you were looking for the license that applies to Berkeley DB, click here.
http://www.oracle.com/technetwork/products/berkeleydb/downloads/oslicense-093458.html

If you were looking for the license that applies to Berkeley DB Java Edition, click here.
http://www.oracle.com/technetwork/products/berkeleydb/downloads/jeoslicense-086837.html

Berkeley DB XML makes use of Berkeley DB for storage of XML data, indexes, and
other information. It also depends on two other 3rd party software packages.
These are all included as part of each Berkeley DB XML download package for
convenience sake. The first 3rd party package is XQilla
(http://xqilla.sourceforge.net/). This XQuery implementation was donated to
the open source community by Oracle
(http://www.oracle.com/corporate/press/2008_mar/xquilla.html) in 2008. It is
licensed under the Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0.txt)
license. The second 3rd party library used in Berkeley DB XML is Xerces-C
(http://xerces.apache.org/xerces-c/), it too is licensed under the Apache 2.0
(http://www.apache.org/licenses/LICENSE-2.0.txt) license.

The license below applies to the Berkeley DB XML code itself.

The following is the license that applies to this copy of the Berkeley DB XML
software. For a license to use the Berkeley DB XML software under conditions
other than those described here, or to purchase support for this software,
please contact Oracle at berkeleydb-info_us@oracle.com.

=-=

 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure

Tethys Metadata Page 82

cooperation with the community in the case of network server software.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.

 A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.

 The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.

 An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

Tethys Metadata Page 83

 0. Definitions.

 "This License" refers to version 3 of the GNU Affero General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of

Tethys Metadata Page 84

interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you

Tethys Metadata Page 85

with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

Tethys Metadata Page 86

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical

Tethys Metadata Page 87

 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install

Tethys Metadata Page 88

and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Tethys Metadata Page 89

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

Tethys Metadata Page 90

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered

Tethys Metadata Page 91

work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so

Tethys Metadata Page 92

available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

Tethys Metadata Page 93

 13. Remote Network Interaction; Use with the GNU General Public License.

 Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

Tethys Metadata Page 94

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify

Tethys Metadata Page 95

 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

ADDITIONAL THIRD PARTY NOTICES:

=-=
Zlib Data Compression Library 1.2.11

 Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.

Tethys Metadata Page 96

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu

=-=
xerces-C++ 3.1.4

This product includes software developed by
the Apache Software Foundation (http://www.apache.org)

 Portions of this software were originally based on the following:
 - software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

=-=
Xqilla 2.3.3

This product includes software developed by
the Apache Software Foundation (http://www.apache.org)

=-=

The following applies to all products licensed under the Apache 2.0 License:

You may not use the identified files except in compliance with the Apache
License, Version 2.0 (the "License.")

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0. A copy of the license is also
reproduced below.

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

Tethys Metadata Page 97

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent

Tethys Metadata Page 98

 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,

Tethys Metadata Page 99

 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any

Tethys Metadata Page 100

 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,

Tethys Metadata Page 101

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

9.3 CherryPy Object oriented web framework
 www.cherrypy.org - The Tethys server uses CherryPy to implement its transport layer.

Copyright © 2004-2019, CherryPy Team (team@cherrypy.dev)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of CherryPy nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.cherrypy.org/
mailto:team@cherrypy.dev

Tethys Metadata Page 102

9.4 Libraries using the MIT License

The following libraries use the MIT License shown below:

1. py-dom-xdom: XML XPath queries for Python (c) 2009, used in Python client:
https://code.google.com/p/py-dom-xpath/

2. pyodbc – Open database connectivity library (c) 2012, used in server:
https://code.google.com/p/pyodbc/

The MIT License (MIT)

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

https://code.google.com/p/py-dom-xpath/
https://code.google.com/p/pyodbc/

	1 Overview
	2 Setup and Administration
	2.1 Setup
	2.1.1 Hardware and software requirements
	2.1.1.1 Windows firewall
	2.1.1.2 Microsoft ODBC installation for spreadsheet and database import
	2.1.1.3 R installation for data export (optional)

	2.1.2 Download Tethys
	2.1.2.1 Server
	2.1.2.2 Clients
	2.1.2.2.1 Web client
	2.1.2.2.2 Data Explorer
	2.1.2.2.3 Java client
	2.1.2.2.4 Python client
	2.1.2.2.5 MATLAB client

	2.1.2.3 Databases
	2.1.2.4 Utilities
	2.1.2.4.1 Documentation
	2.1.2.4.2 NilusXMLGenerator
	2.1.2.4.3 Python39

	2.2 Start the server
	2.2.1 Using a batch file
	2.2.2 Using the command line
	2.2.2.1 Optional arguments

	2.3 Shutdown the server
	2.4 Run the server as a service

	3 Using Tethys
	3.1 Data organization in Tethys
	3.1.1 Collections
	3.1.2 Document structure
	3.1.2.1 Calibration documents
	3.1.2.2 Deployment documents
	3.1.2.3 Detection documents
	3.1.2.4 Ensemble documents
	3.1.2.5 Event documents
	3.1.2.6 Localization documents
	3.1.2.7 ITIS document
	3.1.2.8 ITIS ranks document
	3.1.2.9 Species Abbreviation documents
	3.1.2.10 External document types
	3.1.2.10.1 Ephemeris data
	3.1.2.10.2 Time zone data
	3.1.2.10.3 NOAA ERDDAP data

	3.2 Adding data to Tethys
	3.2.1 Source maps
	3.2.2 Importing documents to Tethys
	3.2.3 Updating existing documents
	3.2.4 Viewing attached images in a web browser

	3.3 Removing/modifying data
	3.4 Query
	3.4.1 Data Explorer
	3.4.2 Web client
	3.4.3 Java client
	3.4.4 MATLAB client
	3.4.4.1 Uploading/Removing data
	3.4.4.2 Querying the database
	3.4.4.3 Visualization

	3.4.5 Python client
	3.4.5.1 Create a checkpoint
	3.4.5.2 Import documents
	3.4.5.3 Remove all documents
	3.4.5.4 Remove a specific document
	3.4.5.5 Shutdown the server
	3.4.5.6 Rebuild a collection
	3.4.5.7 XQuery from Python

	3.4.6 XQuery
	3.4.6.1 Advanced queries – Example 1
	3.4.6.2 Advanced queries – Example 2
	3.4.6.2.1 Let statements and library modules
	3.4.6.2.2 Nested loops and conditional statements

	3.4.7 Case study: Northeast Fisheries Science Center Minke Boing analysis

	4 Maintenance
	4.1 Checkpoints
	4.2 Backups
	4.3 Help! My database has fallen and cannot get up!
	4.3.1 Server will not start / Server window disappears
	4.3.2 Database is not responsive
	4.3.3 Database is corrupted

	5 Appendix: XML Schema Diagrams
	5.1 Calibration
	5.2 Deployment
	5.3 Detections
	5.4 Ensemble
	5.5 Event
	5.6 Localization

	6 Appendix – BatchLogs
	7 Appendix: Tethys.xq Module Functions
	8 References
	9 Licenses
	9.1 Python
	9.2 Berkeley DBXML
	9.3 CherryPy Object oriented web framework
	9.4 Libraries using the MIT License

