Tethys R Client

CONTENTS

R [o1 oo [¥ ot i [o] T PP TSP PUPTOUPROURIOt 3
2 R PACKage REGUINEMENTS ..oiiiiiiiiiiee ettt e e e e et re e e e e e e e e s btaeeeeeaesesasnssaaseaaaseaaassssaseeaaasennnssnes 3
N U T = o o =T = o1V R 1T o USSR 4
3.1 EXECULING QUETIES i 4
3.1.1 Simple declarative QUENY laNGUAEEccoccveii ittt ree e et e e e sbae e e e sbee e e e sreee e e eareeas 5
0 A o T UL [oY= O [0 1] o VR 8

3.2 Extracting data from the results 0f @ QUEIY.......coov i e 10
3.2.1 Extracting data from specific fieldscccriiieiri e 10
3.2.2 Converting XML returned from a query to a data frame.ccccceeeeciieei e, 10
YV T S =TT 14 T RSP 14
4.1 THE XIMIL/XMI2 LIDEAIIES cvveeeeeeeeee ettt ettt ettt e s et e s e eate e s e eaetesesaaaeessassaeessssaeessassaeesssreeesssnnees 14
4.2 The data.tre@ LIDIary ...ttt e e e e e et re e e e e e e e e enbrateeeeaeeeeaanstaaaeeaaseeennnes 17

2 Tethys R Client

1 INTRODUCTION

Analysis of Tethys data in R begins with accessing the data. There are several ways to do this:

Use the RClient Tethys class to execute queries with the R programming language (chapter 2).
Results are returned as text that can then be parsed using XML libraries (see chapter 3).

Run a query in the web client interface (e.g., http://mytethys.domain:9779/Client?).

Results may be saved in either the R data.tree? format or as XML and then imported. Use the Save
to functionality to select the format and save it. See chapter 3 for details on working with XML and
data.tree.

Save output from the Data Explorer program as a comma separated value file and load it using R’s
read_csv function. Data Explorer provides a simplified view of the Tethys data and reduces
everything to a table. This reduces the complexity of working with the data, but does not offer as
much functionality.

2 R PACKAGE REQUIREMENTS

The following Comprehensive R Archive Network (CRAN) library packages should be installed:

data.tree provides a relatively straightforward method for representing the hierarchical data
contained in an XML document.

xml2 — A library to work with XML files. This package is recommended over the XML package due to
speed and memory efficiency.

XML — A library to parse XML files

stringr — A library for string manipulation.

isonlite — Library for building Javascript object notation (JSON)

parsedate — Library for parsing timestamps.

httr2 — Library for http:// and https:// communication which is how the package communicated with
the Tethys server.

Packages can be installed using the install.packages command, e.g.

install.packages("XML")

install.packages("xml2")

or if you use RStudio you may use the Tools/Install Packages menu option. Most of these packages do not
need to be accessed directly, but provide support for the Tethys R client. If you need to access a specific
package such as xml2, use the library command:

library(xml2)

1 Update this URL for the Tethys server that you are using.
2 The data.tree package is not well-suited for large amounts of data, and we have observed some issues with using it.

We recommend using XML.

3 Tethys R Client

https://cran.r-project.org/web/packages/data.tree/index.html
https://cran.r-project.org/web/packages/xml2/
https://cran.r-project.org/web/packages/XML/
https://cran.r-project.org/web/packages/stringr/
https://cran.r-project.org/web/packages/jsonlite
https://cran.r-project.org/web/packages/parsedate
https://cran.r-project.org/web/packages/httr2

3 USING THE TETHYS R CLIENT

Code for accessing Tethys data from R is available in the RClient subfolder of the Tethys distribution. The R
client is preliminary and is not currently set up as an R package. To use it, you must source the tethys.r.
Throughout this manual, we will write commands that can be executedinRin this font and color.
The R prompt (>) will be omitted to make it easier to copy and paste examples.

source("path/to/tethys/RClient/tethys.r")

This will make the tethys class available. Tethys is a reference class, so methods are separated from the
class instance by a dollar sign ($). Start by creating an instance of the Tethys object. You must know the
machine identifier for the Tethys server, the port on which it is running, and whether or not the server is
running in encrypted mode. Most Tethys users do not turn on encryption as it requires a signed security
certificate to work well.

t <- tethys$new("my.server.gov", port=9779, secure=FALSE)

If you are running the server on the same machine as the R process and you have not changed the port or
security settings, you can use the default arguments:

t <- tethys$new() # Shortcut when server/client on same machine

To test communication, you can use the ping() method which returns TRUE if we can communicate with the
server:

t$ping ()
[l] TRUE

Should ping return FALSE, there are several likely causes:

e Tethys may be down. Try to connect from another machine if possible. The easiest way to do this is
with the web client as it does not require software installation. Navigate to
http://server.machine.name:9779/Client (use https:// if the server was configured with security

enabled). If you can load the page on your machine, you may have an R issue or the R program may
need a firewall exemption. If you cannot, try the same test on a machine that has been able to
connect to the server in the past.

o Verify that Tethys is running on the server. Your administrator should be able to check this.

3.1 EXECUTING QUERIES

The client supports two forms of query, simple declarative query language that is specifies a set of text-
based selection constraints and data to return, and XQuery, a standard mechanism for querying XML

4 Tethys R Client

http://server.machine.name:9779/Client

databases. Simple query language is only capable of a subset of XQuery’s functionality, but it is suitable for
most users and does not require learning XQuery.

3.1.1 Simple declarative query language
The Tethys class supports the following methods that are designed to enable users to write queries without
having to learn a complicated query language:

o getDeployments — Retrieve information about instrument deployments.

e getCalibration — Retrieve information about instrument calibrations.

o getDetectionEffort — Retrieve information about which taxa we have been looking for, where we
have been looking, and how we have been looking.

e getDetections — Retrieve information about what we have actually found.

e getlocalizationEffort — Retrieve information about where and how we have attempted to localize
sounds.

e getlocalizations — Retrieve localization information.

All of these rely on syntax that indicates a set of criteria that must be met and optionally a set of information
that will be returned in the query. For each of the query functions, there is a default set of values that are
returned, but these can be customized to contain specific types of data.

The first argument of all of these uses the same syntax to specify the criteria being selected. For example, if

we wanted to see all information about instruments deployed at 800 m depth or deeper that had a sample

rate of greater than or equal to 192 kHz, we could provide the following string to getDeployments:

Throughout these examples, we will assume that variable t contains

an instance of the Tethys object.

xml <- t$getbDeployments('DeploymentDetails/ElevationInstrument_m <= -800 and
SampleRate_kHz >= 192")

The results could then be processed using the methods described in the section 2.2 (p. 10) on working with

XML. In order to know how to construct a query you first need to have an understanding of the data that

are being queried. These can be found by asking to have the list of elements associated with a collection

displayed:

Open a schema in a web browser. Argument should be the root element of a

collection document:

Deployment, Calibration, Ensemble, Detections, or Localizations
t$schema("Deployment'")

This will open a table in a web browser that lists the names of fields? in the schema, their type, the minimum
and maximum number of times they can appear as a child of their parent, and a field description. Fields that
we consider to be self-describing may not have a description. Valid arguments to the schema method can
be found in Table I.

Table | — Collections and the root element used with the schema method.

| Collection | Root element | Collection purpose

3 In XML, fields are called elements or element attributes, we use the name field here as it is familiar to more people.

5 Tethys R Client

Calibrations Calibration Results of transducer (microphone, hydrophone) calibration.
Deployments Deployment Details about instrumentation that has been deployed.

Detections Detections Details about passive acoustic monitoring detection effort and results.
Localizations Localize Details about localization effort and results.

Ensembles Ensemble Virtual instruments consisting of multiple deployments.

Comparisons of fields and values are based on operators that are common in many languages (Table Il) and
the field name must appear on the left-hand side of the comparison.

Table Il — Simple query language comparison operators.

= equal to

> greater than

>= greater than or equal to
< less than

<= less than or equal to

Multiple comparisons must be joined by the word “and,” indicating that all conditions must be true. The
“or” keyword is not available in the simple query language®.

Field names consist of a path of field names separated by forward slashes (/). For example, the deployment
sample rate field path is:

Deployment/SamplingDetails/Channel/Sampling/Regimen/SampleRate_kHz.

When a field only appears once in the schema, the path can be omitted and one can just write
SampleRate_kHz. This is not always the case. For example, in the deployments collection, Longitude fields
exist in multiple places (Figure 1).

4 Disjunction (or) is permitted in XQuery, the query language to which the simple query language is translated.
However, disjunction is only allowed when a pair of fields share the same common ancestor. Allowing this would
require additional complexity that we do not wish to introduce into simple queries. If this is really needed, one can
learn XQuery or generate an XQuery from simple query language or the web client and modify it. To generate an
XQuery, add plan=2 to any of the query functions and the result will contain the XQuery that would have been
executed.

6 Tethys R Client

Longitude

DeploymentDetails <
...other fields
RecoveryDetails <

...other fields

Deployment
-
other fields

Figure 1 — Field names may be repeated as children of different fields.

Writing selection criteria such as “Longitude > 30” are not sufficient for the parser to determine which
Longitude is desired. Either use the entire path, or a distinct subset of it, e.g.,
“DeploymentDetails/Longitude > 30”. Failure to do so will produce an error except in rare cases where it is
reasonable to assume a preference for one over the other.

It is possible to use constraints across schemata. For instance, one might be querying detections and wish to
add a constraint that they be restricted to a specific deployment Site. The Site field can be used in the
query. If afield appears in both schemata, it will default to the one in the schema most associated with the
query. For example, in the deployments collection, Deployment/Deploymentld is a number associated with
the N™ deployment at a site or the N* set of deployments. In the detections schema,
Detections/DataSource/Deploymentld indicates the identifier for the deployment the detections are
associated, that is the deployment where Detections/DataSource/Deploymentld = Deployment/Id.
Consequently, if one wishes to filter by deployment’s Deploymentld, one must use
“Deployment/Deploymentld” in the query. When fields are referenced from multiple collections,
constraints are automatically added to the query to ensure that related documents are matched when
possible.

If a user simply writes a set of selection criteria, a default set of return values appropriate to the type of
query will be returned. However, this can be overridden by using the return keyword and a comma-
separated list of fields to be returned. For example, suppose we were interested in a list of all deployments
in water less than 100 m (instrument elevation > -100), their sample rate, the number of bits per sample,
and deployment depth. The following query will accomplish this:

xml <- t$getDeployments('DeploymentDetails/ElevationInstrument_m > -100 return I
d, sampleRate_kHz, SampleBits, DeploymentDetails/ElevationInstrument_m')

As a final example, we ask for which species in the Northern hemisphere did we have effort where
detections were reported as binned presence (presence/absence over a fixed time bin):

xm1d<— t$getDetectionEffort('Granularity = "binned" and DeploymentDetails/Latitu
e >0")

7 Tethys R Client

Note that even though we queried on detections, we were able to reference deployment fields to filter
where we had detection effort. When executed on the demonstration database, the result looks like this:

cat(xml)
<Result>
<Record>
<Id>CINMSO4C automatic UO</Id>
<DataSource>
<DeploymentId>CINMS0@4-C</DeploymentId>
</DataSource>
<Start>2008-10-15T00:00:00Z</Start>
<End>2008-12-04T01:02:30Z</End>
<Kind>
<SpeciesId>Odontoceti</SpeciesId>
<Call>Clicks</Call>
<Granularity BinSize_m="1.25">binned</Granularity>
</Kind>
</Record>
<Record>
<Id>CINMSO5B_automatic_UO</Id>
<DataSource>
<DeploymentId>CINMSO5-B</DeploymentId>
</DataSource>
<Start>2008-12-04T00:00:00Z</Start>
<End>2009-02-21T11:14:28.000002Z</End>
<Kind>
<SpeciesId>Odontoceti</SpeciesId>
<Call>Clicks</Call>
<Granularity BinSize_m="1.25">binned</Granularity>
</Kind>
</Record>
<!-- other records ... -->
</Result>

To work with this type of XML data that is returned as a character vector, we need to either extract out
specific information or convert some portion of the XML to a dataframe (see section 2.2, p. 10).

3.1.2 Executing XQuery
Most users will not need to use XQuery and we suggest skipping to the next section unless you have a
specific need.

The XQuery language is used for querying data from XML databases or documents. The vast majority of
gueries can be accomplished with the simple query language which writes XQueries for you. There is a brief
introduction to XQuery in the main Tethys manual, and for those interested in learning the language we
highly recommend Walmsley (2006).

8 Tethys R Client

The Tethys class has two methods for executing XQuery:

e XQuery(query, stylesheet)
e XQueryTethys(query, stylesheet)

which both take identical character vector arguments. The mandatory query argument is the XQuery
database query. Stylesheet is optional and not needed for most users. When present, it contains an XSLT
stylesheet (Kay 2008), a specification for transforming XML. While the description of XSLT is beyond the
scope of this manual, it is quite powerful and can be used to rewrite XML or to transform it into other
formats (e.g., HTML, JSON). Interested users are referred to one of the many books and web sites that
describe XSLT.

The XQueryTethys method performs the same operations as XQuery, but prepends the following lines to the
query:

declare default element namespace "http://tethys.sdsu.edu/schema/1.0";
import module namespace lib='http://tethys.sdsu.edu/XQueryFns' at 'Tethys.xq';

XML supports namespaces, which allow the same field name (XML element) to have multiple meanings,
much like the international telephone system’s country code allows the same telephone number to be
assigned to different people in different countries. The first line states that fields (elements) used in this
query will by default be assigned to the Tethys namespace which is generally what is desired.

As an example, on the demonstration database, the following XQuery for the number of deployments in the
southern hemisphere:

t$XQueryTethys('count(collection("Deployments")/Deployment[DeploymentDetails/Lat
itude < 0])")

(14"

If we run the same query without placing the elements in the Tethys namespace explicitly, we do not receive
the results that we expect:

t$XQuery('count(collection("Deployments")/Deployment[DeploymentDetails/Latitude
< 0"

(170"

as the elements were not in the Tethys namespace. One can add additional code to the XQuery to place the
elements in the Tethys namespace, but it is usually easier to use the XQueryTethys method instead of the
XQuery method.

The second line that XQueryTethys prepends (import module ...) makes available a set of utility functions
designed for Tethys that enable utility functions such as mapping between Latin taxonomic names,
abbreviations, and Integrated Taxonomic Information System (ITIS) serial numbers that Tethys uses
internally to represent taxonomic information. For further details about the utility functions and
namespaces, see the Tethys manual.

9 Tethys R Client

3.2 EXTRACTING DATA FROM THE RESULTS OF A QUERY
The results returned from queries consist of character vectors. Typically, these are XML documents. To be
useful, they need to be converted into R data structures that can be manipulated.

There are two methods for doing this. The first is to apply functions that extract out specific portions of the
data, usually specified by a path. The second possibility is to convert portions of the XML to a data frame.
This involves using a path to specify a specific field that might be repeated (e.g., Detection in a set of
detections). There are caveats to converting to data frames, and in some cases this may not be possible. As
an example, if one is interested in retrieving detections, and some of the detections have a measured
received level and others do not, this would create problems as all rows of the data frame need to have the
same data elements. Note that the data frames are constructed from query results, so querying the same
set of detections without returning the received level would allow the construction.

3.2.1 Extracting data from specific fields
This is described in the section on XML2 (3.1, p. 14).

3.2.2 Converting XML returned from a query to a data frame.
For the impatient:

1. If you do not know what your query result will look like, execute the query and inspect the result
(cat the result or save it to afile if it is large).

2. Determine what portion of the subtree you want, e.g. all Detection fields (XML elements). Note the
fields from the top of the XML down to your field. The list of these elements, which must start with a
forward slash (/) and have forward slash separators between each field will be called the path.

For example: /Result/Record/Detection.

3. Rerun the query with the stylesheet argument. It should be a named vector with the following
fields:

e operation="flatten" — Only operation currently available, makes everything beneath the path
the same level. If there is a child field that repeats, you cannot create a flat structure.

e path="/Result/Record/Detection" — Path to an field that may repeated. Each row of the
dataframe will consist of fields and values that are children of the data specified by the path
argument.

e parents=N — Optional value, indicates how many parents should included in the field names.
This is only needed when there are fields with the same name that are children of multiple
fields. For example, if a deployment query returns DeploymentDetails and RecoveryDetails,
these both have several fields with the same name such as Longitude, Latitude. Parents=1
would rewrite the fields as DeploymentDetails.Longitude, RecoveryDetails.Longitude, etc. If
more levels are needed the value of parents can be increased.

Example parameter:
stylesheet=c(operation="flatten", path="/Result/Record/Detections/Detection", parents=1))

4. Use the TethysSxml2df method to convert your XML to a dataframe. It requires the XML document
to transform, and a path to the section of the result to be transformed to a dataframe.

Example that assumes t contains a Tethys object:

10 Tethys R Client

ResponsibleParty/organizationName appears in both DeploymentDetails

and RecoveryDetails. Hence, we need 2 parents to make organizatioName unique

xml = t$getDeployments('Project = "Aleut" return Id, DeploymentDetails, Recovery
geta11s', stylesheet=c(operation="flatten", path="/Result/Record", parents=2)

Convert each Record to a row in the dataframe
wWe convert to the appropriate type when possible.
df = t$xml12df(xml, "/Result/Record")

CAVEATS: Dataframe processing does not currently deal with missing values. For example, if there are a pair
of detectors where one predicts Start timestamps and the other predicts Start and End, they should be
queried separately. Processing a query result where some End values are missing will be flawed. This may
be addressed in future releases.

For those who want to understand...

Dataframes are flat structures, meaning that they are tabular without any nested structures. Many times,
this does not present significant problems. The default detection query returns the Start, End, and Speciesld
for each detection. As long as all of the detections returned have this, conversion is easy®.

xml <- t$getDetections('SpeciesId = "Lagenorhynchus obliquidens")

<Result>
<Record>
. many other detections ..
<Detection>
<Start>2013-03-16T13:00:52.500Z</Start>
<End>2013-03-16T13:25:37.500Z</End>
<SpeciesId>Lagenorhynchus obliquidens</SpeciesId>
</Detection>
<Detection>
<Start>2013-03-17T03:22:02.500Z</Start>
<End>2013-03-17T04:32:37.500Z</End>
<SpeciesId>Lagenorhynchus obliquidens</SpeciesId>
</Detection>
</Detections>
</Record>
</Result>

Consequently, we need to select a portion of the data that repeats in a regular way. By specifying a path to
Detection, we can do so and create a data frame with Start, end, and Speciesld columns.

df = t$xml2df(xml, path="/Result/Record/Detections/Detection")

5> This query was executed on a different database than the demonstration database that is included with the Tethys
distribution, and will not yield the same results.

11 Tethys R Client

O oOoNOUVD WNER S_lh

=
(]

Currently, the xml2df does not support cases where elements are not present in every row. If we had

2011-01-29
2011-02-23
2011-03-01
2011-03-02
2011-03-02
2011-03-03
2011-03-03
2011-03-04
2011-03-05
2011-03-14

23:
06:
05:
02:
09:
04:
10:
04:
03:
03:

Start

45:
41:
56:
51:
29:
02:
58:
41
58:
14:

22
27
52
17
17
52
27
22
27
27

2011-01-29
2011-02-23
2011-03-01
2011-03-02
2011-03-02
2011-03-03
2011-03-03
2011-03-04
2011-03-05
2011-03-14

23:
06:
06:
03:
10:
04:
11:
05:
04:
03:

requested that Parameters/Subtype be returned:

50:
45:
14:
40:
07:
38:
14:
14:
15:
37:

End
42
02
57
27
57
02
22
37
42
17

Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus
Lagenorhynchus

SpeciesId
obliquidens
obliquidens
obliquidens
obliquidens
obliquidens
obliquidens
obliquidens
obliquidens
obliquidens
obliquidens

Similar to above request, but returns a Subtype field for detections
that have one.

xml <- t$getDetections('SpeciesId = "Lagenorhynchus obliquidens” return Detectio

As only some of the detections have a Subtype, this will generate an error.

n/start, Detection/End, Detection/SpeciesId, Parameters/Subtype')

df = t$xml12df(xml, path="/Result/Record/Detection")
Error in (function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE, :

arguments imply differing number of rows: 3384, 1989

Things become a little more complicated in examples where the items we want to use to form rows contain

nested values. Consider this query for deployments in the southern hemisphere:

xml <- t$getDeployments('DeploymentDetails/Latitude < O return Id, DeploymentDet

ails, RecoveryDetails')

which returns the following XML:

12

Tethys R Client

<Result>

<Record>
<Id>ANTARCO1-EI</Id>
<DeploymentDetails>

<Longitude>304.046033</Longitude>
<Latitude>-60.886900</Latitude>
<ElevationInstrument_m>-762</ElevationInstrument_m>
<TimeStamp>2014-03-05T00:00:00Z</TimeStamp>
<AudioTimeStamp>2014-03-05T00:00:00Z</AudioTimeStamp>
<Vessel>SB15-Tango</Vessel>
<ResponsibleParty>

<organizationName>Scripps Whale Acoustics Lab</organizationName>
</ResponsibleParty>

</DeploymentDetails>
<RecoveryDetails>

<Longitude>304.046033</Longitude>
<Latitude>-60.886900</Latitude>
<TimeStamp>2014-07-14T12:03:50Z</TimeStamp>
<AudioTimeStamp>2014-07-14T12:03:50Z</AudioTimeStamp>
<Vessel>SB15 Tango</Vessel>
<ResponsibleParty>

<organizationName>Scripps Whale Acoustics Lab</organizationName>
</ResponsibleParty>

</RecoveryDetails>
</Record>
<Record>
<Id>ANTARC_SSI 01</Id>
<DeploymentDetails>

<RecoveryDetails>

</RecoveryDetails>
</Record>

</Result>

We can use the a flatten stylesheet specification in the query to make everything under /Result/Record be
part of the same row. However, there are many fields that have different parents. For example, Latitude

occurs in both DeploymentDetails and RecoveryDetails. Adding one parent to every nested field would help

some as it would let us distinguish our Laittudes, but it would not let us distinguish organizationName as
organizationName has ResponsibleParty as the parent in both the deployment and recovery details.

By specifying that we want /Result/Record to form the rows of our dataframe and that we want to keep the

names of up to two parents, we can generate XML that is more amenable to a constructing a dataframe.

13 Tethys R Client

xml <- t$getDeployments('DeploymentDetails/Latitude < O return Id, DeploymentDet
ails, RecoveryDetails', stylesheet=c(operation="flatten", path="/Result/Recor
d/", parents=2))

The flattened records look like this:

<Result>
<Record>
<Id>ANTARCO1-EI</Id>
<DeploymentDetails.Longitude>304.046033</DeploymentDetails.Longitude>
<DeploymentDetails.Latitude>-60.886900</DeploymentDetails.Latitude>
<DeploymentDetails.ElevationInstrument_m>-762</DeploymentDetails.ElevationInstrument_m>
<DeploymentDetails.TimeStamp>2014-03-05T00:00:00Z</DeploymentDetails.TimeStamp>
<DeploymentDetails.AudioTimeStamp>2014-03-05T700:00:00Z</DeploymentDetails.AudioTimeStamp>
<DeploymentDetails.Vessel>SB15-Tango</DeploymentDetails.Vessel>
<DeploymentDetails.ResponsibleParty.organizationName>Scripps Whale Acoustics
Lab</DeploymentDetails.ResponsibleParty.organizationName>
<RecoveryDetails.Longitude>304.046033</RecoveryDetails.Longitude>
<RecoveryDetails.Latitude>-60.886900</RecoveryDetails.Latitude>
<RecoveryDetails.TimeStamp>2014-07-14T12:03:50Z</RecoveryDetails.TimeStamp>
<RecoveryDetails.AudioTimeStamp>2014-07-14T12:03:50Z</RecoveryDetails.AudioTimeStamp>
<RecoveryDetails.Vessel>SB15 Tango</RecoveryDetails.Vessel>
<RecoveryDetails.ResponsibleParty.organizationName>Scripps Whale Acoustics
Lab</RecoveryDetails.ResponsibleParty.organizationName>
</Record>

</Result>
and we can now construct a dataframe which is not shown here as it is a very wide table.

df = t$xml12df(xm1, "/Result/Record")

4 WORKING WITH XML

The xml2 package is the most efficient library. The data.tree offers relatively easy navigation, but it is not
efficient for large xml data sets and we are also currently seeing issues with retrieving data from the nodes
and cannot recommend using it for use with the R client at this time. For now, we recommend using xml|2.

4.1 THE XML/XML2 LIBRARIES

There exist two packages for parsing XML in R. XML is the older package and requires users to manage
memory. The xml2 package is a wrapper for a C library and is generally preferred. While either one can be
used, we recommend xml2 and will provide xmlI2 examples.

Read in an XML file. For example, if the output of an effort query was saved as XML file effort.xml, one
might read the XML as follows:

Here, we read XML from a file that is in the current

working directory. 1Instead of having a string with

a filename, we could also have a string returned from the
R Tethys client and it would also be parsed.

> xml <- read_xml("effort.xml")

This creates a set of lists:

14 Tethys R Client

> xml

[1] <Record>\n <Deployment>\n <Id>CCES10_PTA</Id>\n <Project>CCES</Project>\n <Site>PTA</Site>\n ...
[2] <Record>\n <Deployment>\n <Id>CCES12_MOB</Id>\n <Project>CCES</Project>\n <Site>MOB</Site>\n ...
[3] <Record>\n <Deployment>\n <Id>CCES13_CHI</Id>\n <Project>CCES</Project>\n <Site>CHI</Site>\n ...
[4] <Record>\n <Deployment>\n <Id>CCES14_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...
[5] <Record>\n <Deployment>\n <Id>CCES16_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...
[6] <Record>\n <Deployment>\n <Id>CCES17_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...
[7] <Record>\n <Deployment>\n <Id>CCES18_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...
[8] <Record>\n <Deployment>\n <Id>CCES19_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...
[9] <Record>\n <Deployment>\n <Id>CCES20_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...

[10] <Record>\n <Deployment>\n <Id>CCES21_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...

[11] <Record>\n <Deployment>\n <Id>CCES22_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...

[12] <Record>\n <Deployment>\n <Id>CCES23_BCN</Id>\n <Project>CCES</Project>\n <Site>BCN</Site>\n ...

XML supports namespaces, a wrapping mechanism that allows us to distinguish the same name when it is
defined in different contexts. While Tethys uses namespaces, the RClient removes these by default.

If you overrode the default, they will need to be stripped manually.

xml _ns_strip(xml) # IMPORTANT: Examples will not function with namespaces

To see it as XML, use the XML package:

> xml_p <- xmlParse(xml)
> xml_p # display it

<Result "http://tethys.sdsu.edu/schema/1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Record>
<Deployment>
<Id>CCES10_PTA</Id>
<Project>CCES</Project>
<Site>PTA</Site>
<DeploymentId>10</DeploymentId>
<DeploymentDetails>
<Longitude>234.9416</Longitude>
<Latitude>36.7607</Latitude>
<TimeStamp>2018-08-22T02:11:00Z</TimeStamp>
<AudioTimeStamp>2018-08-22T02:24:55Z</AudioTimeStamp>
<Vessel>R/V Ruben Lasker</Vessel>
</DeploymentDetails>
</Deployment>
<Detections>
<Id>CCES@10 BW Detections</Id>
<Start>2018-08-22T02:24:00Z</Start>
<End>2018-10-21T723:48:00Z</End>
<Kind>
<SpeciesId>Bbl</SpeciesId>
<Call>Clicks</Call>
<Granularity>encounter</Granularity>
</Kind>

15 Tethys R Client

<Kind>
<SpeciesId>Zc</SpeciesId>
<Call>Clicks</Call>
<Granularity>encounter</Granularity>

</Kind>

<Kind>
<SpeciesId "BWC">BWC</SpeciesId>
<Call>Clicks</Call>
<Granularity>encounter</Granularity>

</Kind>

. other species effort omitted for brevity ..

<Algorithm>
<Method>Analyst detections</Method>
<Software>Pamguard</Software>
<Version>2.00.16</Version>
<Parameters>

<Click_Viewer_plot_time_m>2</Click_Viewer_plot_time_m>

</Parameters>

</Algorithm>

</Detections>
</Record>
next Record ...
</Result>

Data are queried through XPath expressions, a list of names showing the path through the nesting.
For example, if we wanted to know which deployments were in this set of detection effort, we could
use:

> xm1_find_al1(xml, "./Record/Deployment/1d")
{xm1_nodeset (12)}

[1] <Id>CCES10_PTA</Id>
<Id>CCES12_MOB</Id>
<Id>CCES13_CHI</Id>
<Id>CCES14_BCN</Id>
<Id>CCES16_BCN</Id>
<Id>CCES17_BCN</Id>
<Id>CCES18_BCN</Id>
<Id>CCES19_BCN</Id>
<Id>CCES20_BCN</Id>
<Id>CCES21_BCN</Id>
<Id>CCES22_BCN</Id>
<Id>CCES23_BCN</Id>

NESeNorawN A

i
| e U

where Record/Deployment/Id specifies the path to the deployment identifiers. If we wanted to
extract the text from these nodes, we could wrap the call in xml_text:
> xml_text(xml_find_all(xm1, "./Record/Deployment/Id"))

[1] "CCES10_PTA" "CCES12_MOB" "CCES13_CHI" "CCES14_BCN" "CCES16_BCN" "CCES17_BC

N" "CCES18_BCN" "CCES19_BCN"
[9] "CCES20_BCN" "CCES21_BCN" "CCES22_BCN" "CCES23_BCN"

16 Tethys R Client

Other useful functions are xml integer() and xml_double for extracting numeric values. Additional
information may be found in the documentation for the xml2 library as well as descriptions of
XPath. There are numerous resources for learning XPath, Walmsley (2006) covers XPath well in
her introduction to the XQuery language. Many examples on the web tend to use the wildcard
search operator (//) which let one search for an XML element at any level (e.g., .//Id instead of
./Record/Deployment/Id). These types of searches are inefficient and should be avoided except on
very small data.

4.2 THE DATA.TREE LIBRARY
The data.tree library is a reference class that can interpret hierarchical data and is well suited for working
with XML. It contains a function for transforming XML to a data.tree object.

Assuming that the Tethys class is contained in variable tethys, one could run a query and convert it to a
data.tree as follows:
Run a query to find out for what, where, and when analysts have

been looking for. Assumes that analysts always use the term
“Analyst detections” for the Detections/Algorithm/Method value.

HH

xml <- tethys$getDetectionEffort('Algorithm/Method = "Analyst detections™')
tree <- tethys$xml2tree(xml) # Convert to a data tree

vV Vv

Data trees can also be loaded in the usual R manner. When the web client is used, the results of queries can
be saved as a data.tree object and loaded into R with the load command, e.g.:

deployment query result
Toad("C:/Users/MyUserName/Downloads/deployments.rbata")

This will result in the variable tree appearing in the R workspace. Let’s take a look at the result of an effort
qguery that we made on the demonstration database:

17 Tethys R Client

> tree

TevelName
1 Root
2 °--Result
3 1--
4 | °--Deployment
5 : | --Id
6 | \--Project
7 | i\ --DeploymentId
8 : 1 --Site
9 l i --Channel
10 | | i ——-ChannelNumber
11 | | | --SensorNumber
12 | | | --Start
13 | | | --End
14 ' ' *--Sampling
15 | | °--Regimen
16 | | | —-TimeStamp
17 i i | --SampleRate_kHz
18 | | *--SampleBits
19 | °--DeploymentDetails
20 i | --Longitude
21 i | --Latitude
22 i i --ElevationInstrument_m
23 ' | --DepthInstrument_m
24 ' | —-TimeStamp
25 ' i -—AudioTimeStamp
26 ' *--Vessel
27 1--2
28 : °--Deployment
29 : | --Id
30 | | --Project
31 : | --DepTloymentId
32 | |--Site
33 l i ——Channel
34 : : i ——ChanneTNumber
35 : : | ——SensorNumber
36 i ' |--Start
37 ' ' | —--End
38 | | *--SampTing
39 | | °--Regimen
40 | | | —-TimeStamp
41 : : | --SampleRate_kHz
42 : : *--SampleBits
43 | °--DeploymentDetails
44 i | --Longitude
45 : i --Latitude
46 : i-—ETevationInstrument_m
47 i i --DepthInstrument_m
48 ' | —-TimeStamp
49 ' | --AudioTimeStamp
50 ' *--Vessel
51 °--3
52 °--Deployment
53 | --Id
72 °--DeploymentDetails
73 | --Longitude
74 | —-Latitude
75 i--ElevationInstrument_m

18 Tethys R Client

76 | --DepthInstrument_m
77 | —-TimeStamp

78 i ——-AudioTimeStamp

79 *--Vessel

The tree variable is an instance of a reference class, and as such uses $ signs to access its methods. One can
access nodes by using the children method, or when a name is unique, just typing the name. For instance,
to access the second deployment node, we would use

> tree$Result$children[[2]]

The children method can be abbreviated with single backticks (°):

> tree$Result$ 2°

To navigate to the Start element of the second deployment, we would use:

> tree$Result$ 2 $Channel$start

Further documentation is available on the CRAN repository.

References

Kay, M. (2008). XSLT 2.0 and XPath 2.0 : programmer's reference. Indianapolis, IN, Wiley Pub.

Walmsley, P. (2006). XQuery. Farnham, UK, O'Reilly.

19 Tethys R Client

https://cran.r-project.org/web/packages/data.tree/vignettes/data.tree.html

	1 Introduction
	2 R Package Requirements
	3 Using the Tethys R Client
	3.1 Executing queries
	3.1.1 Simple declarative query language
	3.1.2 Executing XQuery

	3.2 Extracting data from the results of a query
	3.2.1 Extracting data from specific fields
	3.2.2 Converting XML returned from a query to a data frame.

	4 Working with XML
	4.1 The XML/xml2 Libraries
	4.2 The data.tree Library

