
Tethys MATLAB Interface Cookbook

Tethys, Antioch mosaic, 3rd century from Baltimore Museum of Art

Ally Rice – Scripps Institution of Oceanography
Heidi Batchelor – Scripps Institution of Oceanography
Marie A. Roch – San Diego State University

Table of Contents

1 Getting Started ... 3
1.1 Set your MATLAB path ... 3
1.2 Set a query handle object .. 4
1.3 Set species abbreviations... 4

2 README: Important note about examples ... 6
2.1 Release Notes .. 7

3 Querying the Database ... 8
3.1 Deployments .. 10
3.2 Detections .. 12
3.3 Localizations .. 16
3.4 Diel plots .. 19
3.5 Weekly plots .. 28

4 Environmental Datasets .. 29
4.1 Download ERDDAP data .. 34

5 Add Files to the Database ... 37

6 Appendix: MATLAB Function List .. 40

1 Getting Started

MATLAB can be used as a client to interface with the Tethys database. Common tasks
include adding data to the database and pulling data from the database based on specified
criteria, such as time, location, or species. This document provides a list of available
functions and examples of how to use some of the most useful/common functions.

In many cases, the reader will wish to provide parameters relevant to their own data, our
convention is to highlight these values.

The examples provided below use the most common MATLAB functions for interfacing
with Tethys. The Appendix includes a more complete list of functions with brief
definitions. You can also access these definitions from the MATLAB command line by
typing:

>>help function_name

OR

>>doc function_name

1.1 Set your MATLAB path

1. Start the Tethys server or verify that it is already running.
2. Locate the MatlabClient folder.

The MatlabClient folder will contain the subfolders db, db/c, and vis. The
functions under db are related to accessing the database while the functions in the
vis directory provide support for visualizing data.

3. Start MATLAB

4. Add the db, db\c, and vis directories to your path

a. This can be done using (1) MATLAB’s 'Set Path' tool, located in 'Home'

tab, to save the path for the next time you start MATLAB, or

b. using the addpath command in the startup.m file that is executed when
MATLAB starts. Add the following to your MATLAB\startup.m file:

% Set path to MatlabClient appropriately
clientroot = "…\Tethys\MatlabClient";
% Add folders we need to the search path
for p = ["db", "db\c", "vis"]
 addpath(fullfile(clientroot, p))
end

where the …\Tethys denotes the path to your Tethys folder. See the MATLAB
documentation for more details. We recommend using approach b. as it is more
robust when you upgrade your version of MATLAB.

1.2 Set a query handle object

All calls that interact with the Tethys database require a query handle object to be passed
as the first argument. The query handle object lets the functions know where the server is
and defines the communication protocol.

If done at a command prompt, the handle is valid for the life of the MATLAB session
(unless variables are cleared).

Any variable name can be used for the query handle object. All subsequent examples
assume that a query handle has been set up and it has the name query_h. The name
should be consistent, but need not be “query_h” and any valid variable name may be
used.

To use the default server:

query_h = dbInit();

To use a specific server:

query_h = dbInit("Server", "YourServerName");

If the server is running on a different port than the default one, the Port option may be
used to set the port.

1.3 Set species abbreviations

Tethys uses Latin species names by default. Many organizations use abbreviations such
as “Lo” or “Lobl” for Pacific white-sided dolphin (Lagenorhynchus obliquidens) or
common names. The query handler supports methods for setting how Tethys expects
species names to be written in queries and how they should be displayed in output.
query_h.SetSpeciesIdInput, query_h.SetSpeciesIdOutput and
query_h.SetSpeciesIdInputOutput permit you to specify how species names will
be input to functions and how they should be returned. Like the dbInit function, this

only needs to be called once per MATLAB session. Before using these, we can explore
our options for abbreviations using dbSpeciesAbbreviations(query_h):

>> dbSpeciesAbbreviations(query_h)

1×4 string array

 "NOAA.NMFS.v1" "NOAA.NMFS.v2". "NOAA.NMFS.v3" "SIO.SWAL.v1"

If you want to explore the abbreviations for one of these options, use another query to
return a table:

>>nmfs_v1 = dbSpeciesAbbreviations(query_h, "NOAA.NMFS.v1")

55×4 table

 completename tsn coding Group
 ______________________________ __________ __________ ____________

 {'Balaenoptera borealis' } 1.8053e+05 {'Bb' } {0×0 double}
 {'Balaenoptera brydei' } 6.126e+05 {'Be' } {0×0 double}
 {'Balaenoptera musculus' } 1.8053e+05 {'Bm' } {0×0 double}
 {'Balaenoptera physalus' } 1.8053e+05 {'Bp' } {0×0 double}
 {'Eschrichtius robustus' } 1.8052e+05 {'Er' } {0×0 double}
 {'Megaptera novaeangliae' } 1.8053e+05 {'Mn' } {0×0 double}
 {'Balaenoptera acutorostrata'} 1.8052e+05 {'Ba' } {0×0 double}
 {'Eubalaena glacialis' } 1.8054e+05 {'Eg' } {0×0 double}
 {'Eubalaena japonica' } 6.1259e+05 {'Ej' } {0×0 double}
 {'Eubalaena australis' } 5.5277e+05 {'Ea' } {0×0 double}
 {'Balaena mysticetus' } 1.8053e+05 {'BM' } {0×0 double}
 {'Mysticeti' } 5.523e+05 {'UW' } {0×0 double}
 {'Delphinus delphis' } 1.8044e+05 {'Dd' } {0×0 double}
 {'Delphinus capensis' } 5.5565e+05 {'Dc' } {0×0 double}
 {'Grampus griseus' } 1.8046e+05 {'Gg' } {0×0 double}
 {'Globicephala macrorhynchus'} 1.8047e+05 {'Gm' } {0×0 double}
 {'Lissodelphis borealis' } 1.8045e+05 {'Lb' } {0×0 double}
 …

The completename column is the Latin species name and tsn is the Integrated
Taxonomic Information System’s taxonomic serial number for the species
(https://itis.gov/). Tethys always stores species using TSNs and translates them back and
forth to representations that humans can understand. The species abbreviations can also
contain Group entries which allow us to distinguish different groups of animals within
the same taxonomic rank.

We recommend that anthropogenic sounds be encoded as Homo sapiens (with a
distinguishing call type, e.g., “pile driving”), and that geophonic sounds be encoded as
Other phenomena, an entry that has been inserted into the ITIS encodings with a value of
-10.

We can use the query handler to set a species representation to be used (Latin, a
vernacular name such as “blue whale,” or “Ballena azul,” or an abbreviation defined in a
species abbreviation table such as the one above). Note that ITIS does not have
vernacular entries for many obscure species and frequently only has vernacular entries in
English. When a vernacular entry is not present, the Latin name is substituted.

For example, if you want to input species in English vernacular, Latin, or the
NOAA.NMFS.v1 abbreviation set, we could use one of the following:

• query_h.setSpeciesIdInput("Vernacular", "English")
• query_h.setSpeciesIdInput("Latin")
• query_h.setSpeciesIdInput("Abbrev", "NOAA.NMFS.v1")

Note that the system does not currently check for a valid vernacular or abbreviation,
although this is likely to change in future releases.

The query handler functions setSpeciedIdOutput and set SpeciesIdInputOutput may be
used in the same manner to set how the results of queries or both input and output, e.g.:

• query_h.setSpeciesIdInputOutput("Abbrev", "SIO.SWAL.v1")
• query_h.setSpeciesIdOutput("Abbrev", "SIO.SWAL.v1")

and functions getSpeciesIdInput, getSpeciesIdOutput, and getSpeciesIdInputOutput will
report the current settings, e.g.

>> query_h.getSpeciesIdInputOutput()
Input: SIO.SWAL.v1 Output: SIO.SWAL.v1

2 README: Important note about examples

Examples in this document are designed to work on the demonstration database that is
provided with the distribution of Tethys. Results will vary when used with a different
database, but the “recipes” given in this cookbook can be easily adapted for different
situations.

All examples in this document use the species abbreviation set “SIO.SWAL.v1”. For
examples that involve querying species, you MUST set the input abbreviation to
SIO.SWAL.V1, or queries will not match any results, causing many of the examples
given here to fail. Assuming query_h contains a query handler, the result of a call to
dbInit, one would type:

query_h.setSpeciesIdInputOutput("Abbrev", "SIO.SWAL.v1")

Setting abbreviations need only be done once per Matlab session. If you wish to set a
permanent species abbreviation (Input or Output), the commands to set abbreviations can

be placed in the user’s startup.m file (type: doc startup for details on the startup file.)
along with creation of the query handler.

Remember that the Tethys server must be started for the examples to work. If the server
is not started, an incorrect server address is given, or the server is blocked by network
security (firewall) protocols, you will see an error message produced by any routine that
tries to connect to the server. In such cases, the first line of the error backtrace should
state “Connection refused: connect.” In such cases, discuss the problem with your Tethys
administrator of the Tethys development staff.

2.1 Release Notes

Tethys 3.2

Tethys 3.2 introduces methods to communicate with multiple ERDDAP servers. Users
create an object for each server they wish to communicate with and can search or retrieve
data from that server. Ephemeris data for civil twilight can now be computed without
requiring a Mapping Tool license.

Tethys 3.1

Tethys 3.1 has moved setting and retrieval of TSN translation into the query handler that
is returned by dbInit. The old dbSpeciesFmt functions still work, but please use the
species handler equivalents for new code. In addition, the localization schema has
changed significantly to conform with recommendations from ASA/ANSI working group
7 which is developing standards for bioacoustics metadata. If you are managing
localization data with an earlier version of Tethys (most of our users are not), please
consult with us about migration of your data.

Tethys 3.0

Tethys 3.0 has changed how MATLAB communicates with the database server. In most
cases, this should be transparent to users. User-visible changes to retrieving information
from the database are:

• Selection and return criteria can now be specified either as a complete path
("Detections/Effort/Kind/SpeciesId") or partially ("SpeciesId"). If the
criteria are ambiguous, an error message will be returned that describes the
ambiguous keyword and how it might be interpreted. When possible, Tethys
attempts to guess the right thing to do. For example, in the context of a detection
effort query, we would interpret "SpeciesId" as
"Detections/Effort/Kind/SpeciesId" and when querying detections, we
would look for on-effort detections
("Detections/Effort/OnEffort/SpeciesId") of the specified species.

• dbDeploymentInfo is being replaced by dbGetDeployments to be consistent
with the other data retrieval functions. dbDeploymentInfo still works but is

accompanied by a warning message indicating that it will be removed in a future
release.

• [timestamps, info] = dbGetDetections; now returns two possible
outputs instead of 3 ([timestamps, EndP, info]). End times are optional for
detections as some detectors only produce start times. When detections with and
without end times are the result of a query, the second column of timestamps may
be invalid. The second output (EndP) previously contained a vector of booleans
which indicated which rows of timestamps (timestamps) contained valid end
times. As this can easily be determined by:
 valid = ~ isnan(timestamps(:,2));
the second argument (EndP) was removed.

Tethys 2.5

Users of Tethys prior to 2.5 will notice a change in how results are returned. Some values
in Tethys can occur more than once. For example, when recording call types that
occurred in a 15-minute bin, one might want to report both A and B calls for blue whales.
In the past, if only one call was reported, the field name would contain the string, and if
more than one call was reported, a cell array would be returned. This meant that
sometimes one would reference the data as “Call”, and other times as “Call{1}” and
“Call{2}”. To avoid this complication, all values are now returned as cell arrays.

In Tethys 2.5, the ERDDAP server is changed from coastwatch.pfeg.noaa.gov to
upwell.pfeg.noaa.gov to maintain a more comprehensive NOAA-wide catalog.

3 Querying the Database
Throughout these examples, we will be using input arguments to refine our database
queries. Some of the common arguments used in database queries are:

Argument

Definition Example

Id Unique identifier for the record "Id", "CINMS28-C"
Project Name of the project data is associated

with.
"Project", "CINMS"

Site

Name of the site data was collected
at.

"Site", "C'

DeploymentId Integer describing the Nth
deployment of an instrument at a site,
or the Nth deployment cruise (user
discretion). Can frequently be used
to restrict a query to certain
deployments without specifying
explicit dates. To match multiple
deployments, use a vector with the
desired values or relational operators

"DeploymentId", 28

"DeploymentId", [28:35]

"DeploymentId", [28 32 27]

"DeploymentId", {">=", 35}

that are described later in this
document.

SpeciesId The species name. Values depend on
dbSpeciesFmt.

"SpeciesId", "Bm"

Group

Attribute of SpeciesId, usually used
to denote a population or potential
species within a taxonomic group
when the species determination is
uncertain.

"@Group", "BW70"

Call

The type of call. "Call", "Whistles"

Subtype

The call subtype, if applicable. "Call", {"Subtype",
"Whistles<5kHz"}

Granularity The type of effort (i.e., binned, call,
or encounter).

"Granularity", "binned"

BinSize_m For binned effort, the length of the
bin in minutes.

"BinSize_m", 60

As seen in the examples above, these arguments consist of keyword-value pairs:
'keyword', 'value'. Most examples will use this format. However, we can also form
queries using the path to the keyword within the overarching schema (a 'schema' being
either Calibrations, Deployments, Detections, Ensembles, Events, or Localizations).

For example, to use "Project" as an argument in our query we can either use:

"Project", "ProjectName"

or

"Deployment/Project", "ProjectName"

To look for detections of a given species we could use:

"SpeciesId", "SpeciesName"

or

"Detections/OnEffort/Detection/SpeciesId", "SpeciesName"

For a complete list of arguments, and to better understand the underlying schema, use
dbOpenSchemaDescription(query_h, "Detections"), where Detections is
the top-level name in the schema you want to view, e.g. Calibration, Detections,
Localize, or Localization. Note that the top-level name is not necessarily the same name
as the collection to which the element belongs (e.g., Localize is part of Localizations) and
that the Tethys server must be running.

CAVEAT: Character array vs. string

If you are new to MATLAB, you may not be familiar with the difference between the
character array type and the string type. Character arrays are sets of characters in single
quotes, e.g., 'character array'. In contrast, strings are sets of characters in double quotes,
e.g. "string". There are subtle differences between the two and in most places character
arrays or strings can be used as arguments. The main difference occurs when these
values are aggregated. Strings can be treated as a normal array:

s = ["Save the", "vaquita"];

However, character arrays can only be aggregated using the [] notation if they are all of
the same size. Instead, the cell array notation { } can be used to aggregate these.

s = {'Save the', 'vaquita'};

These two appear similar, but they are referenced differently. To access the second
element, one would use s(2) in the first case and s{2} in the second one. When possible,
we recommend that the string notation be used.

3.1 Deployments
To retrieve deployment information from the database, use the function
dbGetDeployments.

3.1.1 Retrieve information for all deployments

If we wanted a list of all deployments in the database

DeploymentInfo = dbGetDeployments(query_h)

The result would be something similar to:

 1×857 struct array with fields:

 Deployment

Let’s examine the information for one deployment:

DeploymentInfo.Deployment(392)

ans =

 struct with fields:

 Id: {'SOCAL40-R'}
 Project: {'SOCAL'}
 DeploymentId: {[40]}
 Site: {'R'}
 Cruise: {'Socal40'}
 Platform: {'mooring'}
 Region: {'Socal'}
 Instrument: [1×1 struct]

 SamplingDetails: [1×1 struct]
 QualityAssurance: [1×1 struct]
 Data: [1×1 struct]
 DeploymentDetails: [1×1 struct]
 RecoveryDetails: [1×1 struct]
 Sensors: [1×1 struct]

Notice that most fields are cell arrays. This is needed as some fields can be repeated more
than once and it can be difficult for users to know which fields are eligible to be repeated
and which cannot.

Let us drill down to see that this deployment was sampled at 200 kHz with 16 bit
resolution:

DeploymentInfo.Deployment(392).SamplingDetails.Channel.Sampling.R
egimen

ans =

 struct with fields:

 TimeStamp: {[7.3434e+05]}
 SampleRate_kHz: {[200]}
 SampleBits: {[16]}

The TimeStamp is a MATLAB serial date (use datestr to see a human interpretable
representation) indicating when we started this sampling regimen. It is rare, but possible
to change sampling regimens in the middle of a deployment, and if this had happened,
there would have been additional Regimen entries.

3.1.2 Get a list of projects from retrieved deployment info

From the deployment list generated previously, let us find all the individual projects

% Convert cell array of Project to a string array
% DeploymentInfo.Deployment.Project returns multiple values,
% putting it inside the cell array notation { } lets us group
% these into a cell array of character strings.
projects = string({DeploymentInfo.Deployment.Project});
% Return an array of distinct project names
unique(projects)

Note that we could have done this all with a single line by using arrayfun to apply the
operation to a function. To do this, we need to use what MATLAB calls an anonymous
function which has the format:

@(arg) expression(arg)

Here's an example summing two numbers whose values have been truncated:

truncsum = @(x, y) floor(x) + floor(y);

truncsum(3.9, 4.8)

The return value for this example would be 7.

We call arrayfun with two arguments (see doc arrayfun for more details):
1. The function to be applied. In this case, we want to extract Deployment.Project

from DeploymentInfo, so we use @(d) d.Deployment.Project.
2. The array to which we wish the function applied.

The call:

string(unique(...
 arrayfun(@(dep) dep.Project, DeploymentInfo.Deployment)))

will return the same values as the previous calls shown above.

3.1.3 Retrieve deployment info for specific projects and/or sites

If we wanted to find deployment info only for deployments within the project 'SOCAL'
and at site 'H', we could use the following query:

atH = dbGetDeployments(query_h, "Project", "SOCAL", "Site", "H");

To select multiple sites (or other query parameters), an array of values can be used, e.g.,
"Site", ["H", "N"]. Additional arguments could be used to restrict to a specific latitude
range (see next example), species, etc.

3.1.4 Find all deployments in a specific latitude range

Often studies are limited to specific geographic areas. Querying the deployment
information in the Tethys database can provide a list of deployments for a given range of
Latitude and Longitude.

deployments = dbGetDeployments(query_h, ...
 "DeploymentDetails/Latitude",{'>', 45}, ...
 "DeploymentDetails/Latitude",{'<', 60});

3.2 Detections

3.2.1 Detection Effort

To retrieve detection effort information from the database, use the function
dbGetDetectionEffort.

3.2.1.1 Retrieve effort for a specific project

To retrieve the effort for a specific project, use the query:

[effort, details] = dbGetDetectionEffort(query_h, "Project",
"SOCAL");

Additional arguments could be used to restrict the effort to a specific time period,
geographic location, species, etc.

The returned variable effort is a two-column matrix where each row contains a list of
start and end effort times as MATLAB serial dates. This is primarily to support older
Tethys client code, new code may find the data in details easier to work with. The effort
can be converted to a readable format using datestr:

for idx=1:size(effort, 1);

fprintf('%s %s\n',
datestr(effort(idx,1)),datestr(effort(idx,2)))

end

The returned structure details contains information about the type of effort. Within
details, effort_table is a table sorted by effort start time. It shows the effort start
and end timestamps as easily readable Matlab datetime objects, the detection document
Id, and a RecordIdx. The RecordIdx can be used to match the start and end times with
other elements of details, such as the kinds_table. The kinds_table contains a row for
each type of detection effort that was done for a specific effort. As an example, in one
query, the first few rows of the effort table might look like this (some fields are omitted
for brevity):

Start End Id RecordIdx
13-Jan-2009 06:00:00 08-Mar-2009 11:41:26 {'SOCAL31M_LF_logs_jsb'} 1
11-Mar-2009 00:00:00 04-May-2009 06:00:00 {'SOCAL32M_LF_logs_lkr'} 2
17-May-2009 00:00:00 21-May-2009 07:00:27 {'SOCAL33M_LF_logs_lmm1'} 3

The kinds_table within details contains a list that indicates what species we were looking
for and what level of granularity was used for detection annotations. A sample table
might look like this:

RecordIdx SpeciesId Group Cal Granularity BinSize_min Subtype
1 “Bryde's

whale”
{0×0
double}

“Be4” “binned” 60 <missing>

1 “Blue
Whale”

{0×0
double}

“A” “binned” 60 <missing>

1 “Blue
Whale”

{0×0
double}

“B” “binned” 60 <missing>

1 “Blue
Whale”

{0×0
double}

“D” “binned” 60 <missing>

1 “Fin
Whale”

{0×0
double}

“20Hz” “binned” 60 <missing>

 : : : : : :
15 “Other” {0×0

double}
“Motorboat” “binned” 60 <missing>

16 “Human” {0×0
double}

“Active Sonar” “encounter” NaN “MFA<5kHz”

16 “Human” {0×0
double}

“Active Sonar” “encounter” NaN “Echosounder”

16 “toothed
whales”

{0×0
double}

“Whistles<5kHz” “encounter” NaN <missing>

The RecordIdx from the effort table matches the RecordIdx entries in the effort.
Consequently, we can see that between Jan 13, 2009 and Mar 8, 2009 (RecordIdx 1), we
looked for Bryde’s whale Be4 calls, Blue whale A/B/D calls, and Fin whale 20 Hz calls.
For these calls, we see that the effort was binned with a bin size of 60 min, meaning that
analysts only reported presence/absence within hourly bins. We see other types of effort
in the table, such as encounter-level effort for anthropogenic signals and toothed whales,
and that the detections are recorded as the start and end of a set of calls (an acoustic
encounter).

Other fields within the details structure include deployments, a set of deployment
identifiers corresponding to effort table record indices, detection document Ids, and the
raw data returned from the query.

Note that text values, or strings, are accessed with curly brackets. In some cases, there
may be more than one value (although not in this example), so the strings are formed in a
format that supports multiple values. These are called cell arrays, see the MATLAB
documentation if you wish more information about cell array structures.

3.2.1.2 Retrieve effort for a specific deployment

This example is very similar to the previous one, except that we are further limiting our
search. In this case, we are interested in the deployment with an Id of “SOCAL38-M”:

[effort, details] = dbGetDetectionEffort(query_h, ...
 "DeploymentId", "SOCAL38-M");

One can find deployment ids using any of the interactive tools such as the web client,
data explorer, executing dbGetDeployments, or visiting the URL
TETHYSSERVER/Deployments, where TETHYSSERVER is the address of your Tethys server.

Alternatively, one can add criteria related to the deployment. In this case, we specify the
site and a deployment number associated with the deployment of interest. Tethys finds

the appropriate deployment (potentially sets of deployments) and then finds all effort
associated the deployment. We do this by querying Deployment/Site and
Deployment/DeploymentId.
[effort, details] = dbGetDetectionEffort(query_h, "Project",
"SOCAL", ...
 "Site", "M", "Deployment/DeploymentId", 38);

As there is a Detections/DataSource/DeploymentId field which contains “SOCAL-38M,”
we needed to clearly indicate that the DeploymentId number which indicates the nth
deployment or cruise to that site should be looked for within the deployment record by
specifying the parent of DeploymentId: Deployment/DeploymentId.
dbGetDetectionEffort always tries to resolve field names within the Detections schema
first. Specifying Deployment/DeploymentId ensured that the criterion was evaluated
with respect to the deployment record rather than the detections one.

Caveat: there are sometimes multiple efforts for the same species. For example, running
two different detectors for the same species can result in duplicate effort. Therefore,
when performing analyses on data, be careful that you don’t double-count detections.
When querying effort (or detections), you can always specify queries for a specific type
of effort (see the function's help).

3.2.2 Detections

To retrieve detection information from the database, use the function
dbGetDetections.

3.2.2.1 Retrieve detections for a specific project/site/species

To retrieve all detections of killer whales at Site BD from the Aleut Project:

[detections, info] = dbGetDetections(query_h, "Project", "Aleut",
"Site", "BD", "SpeciesId", "Oo");

The returned variable detections will be a one- or two-column matrix of detection
start and end times as MATLAB serial dates. Whether detections contains one or two
columns depends upon whether an end time was recorded for the detection. Some
detection algorithms only record the start time of a detection. If we wanted to easily read
the detection dates/times:

dates = dbSerialDateToISO8601(detections);

The returned variable info contains information about the returned detections.
deployments provides the deployment Ids for the detections. data contains
information about the detection start/end times and species information, while
detection_table provides the same information in a more user-friendly format. Id
provides the detection document filename.

3.2.2.2 Retrieve detections for a species group

It is possible to query for specific group attributes. This is necessary for many beaked
whale signals for which species identification is unknown.

To retrieve all detections of an unidentified beaked whale signal (BW43 in this case) we
could use the query:

detections = dbGetDetections(query_h, '@Group', 'BW43');

Note the use of '@' required to query an attribute. This is also required for a query
formatted using paths:

detections = dbGetDetections(query_h, ...
 'OnEffort/Detection/SpeciesId/@Group', 'BW43');

CAVEAT: Table creation for attributes is not yet supported.

3.2.2.3 Retrieve detections for a given date and time range

To request all the detections for a given date and time range in the database for toothed
whales:

detections = dbGetDetections(query_h, 'SpeciesId', 'UO', ...
 'Effort/Start',{'>', '2001-10-17T19:09:00Z'}, ...
 'Effort/End',{'<', '2009-05-19T00:00:00Z'});

If you have a datetime object or a MATLAB serial date (datenum) that needs to be
concerted to a string, use the function dbSerialDateToISO8601 that converts from serial
dates or datetime objects to ISO 8601 date and time text.

3.3 Localizations

Effort for localizations can be accessed using function dbGetLocalizationEffort, and the
location/direction information can be retrieved from dbGetLocalizations.

Selection criteria are handled as with other queries by using keyword/value pairs. To
examine the localization schema, use:

% Localize is the root element of documents in the localization
% collection. Typing the collection name will also work.
dbOpenSchemaDescription(q, "Localize")

3.3.1 Localization Effort

Function dbGetLocalizationEffort returns a structure that describes localization effort
within the database. Like the other database retrieval functions, the query handler must
be the first argument and subsequent arguments provide constraints on what is returned.

For example, to return effort for tracks recorded in WGS84 longtiude and latitude, one
could specify:

loceff = dbGetLocalizationEffort(q, "Subtype", "Geographic", ...
 "Name", "WGS84", "LocalizationType", "Track")

Assuming that this matched data, loceff will be a structure with two fields:

• data – MATLAB structures corresponding to the XML returned from the database
• effort – A table showing the deployment or ensemble identifier, the start and end of the

effort, and information about the type of localization effort. Due to the constraints of
the query, this would only be for Geographic/WGS84 coordinate systems and would
only report efforts to track a series of calls or sounds.

3.3.2 Localizations

loc = dbGetLocalizations(q, ...
 "Name", "WGS84", "LocalizationType", "Track")

Function dbGetLocalizations returns a structure that describes any directional or
positional information that meet the query criteria. Assuming that localizations have
been found, a structure is returned with the following fields:

• data – MATLAB structures corresponding to the XML returned from the database
• loc – A table showing information about individual localizations. In addition to fields

describing the localization information, DataSourceSet is a many-to-one index that can
be matched to DataSourceSet in the groups table below.

• groups – A table indicating the Id of localization documents and the data source
(DeploymentId or EnsembleId) with which they are associated.

Example tracks from the above query:

>
>

l
o
c
.
l
o
c
(
1
:
5
,
:
)

 a
n
s

=

5
×
9

t
a
b
l
e

L
o
c
a
l
i
z
a
t
i
o
n
S
e
t

T
i
m
e
S
t
a
m
p

T
r
a
c
k
_
T
i
m
e
S
t
a
m
p
s

C
o
o
r
d
i
n
a
t
e
s
_
L
o
n
g
i
t
u
d
e

C
o
o
r
d
i
n
a
t
e
s
_
L
a
t
i
t
u
d
e

N
o
r
t
h
W
e
s
t
_
L
o
n
g
i
t
u
d
e

N
o
r
t
h
W
e
s
t
_
L
a
t
i
t
u
d
e

S
o
u
t
h
E
a
s
t
_
L
o
n
g
i
t
u
d
e

S
o
u
t
h
E
a
s
t
_
L
a
t
i
t
u
d
e

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

1

1
0
-
J
a
n
-
2
0
1
2

2
0
:
2
3
:
5
5

[
1
×
3
6

d
a
t
e
t
i
m
e
]

[
1
×
3
6

d
o
u
b
l
e
]

[
1
×
3
6

d
o
u
b
l
e
]

1
9
9
.
9
6

2
2
.
8
1
1

2
0
0
.
0
5

2
2
.
7
8
9

1

1
0
-
J
a
n
-
2
0
1
2

2
0
:
3
2
:
0
9

[
1
×
6
9

d
a
t
e
t
i
m
e
]

[
1
×
6
9

d
o
u
b
l
e
]

[
1
×
6
9

d
o
u
b
l
e
]

2
0
0
.
0
2

2
2
.
4
5
8

2
0
0
.
1
2

2
2
.
4
0
3

2

1
2
-
J
a
n
-
2
0
1
2

1
7
:
5
5
:
5
8

[
1
×
1
9

d
a
t
e
t
i
m
e
]

[
1
×
1
9

d
o
u
b
l
e
]

[
1
×
1
9

d
o
u
b
l
e
]

1
9
9
.
9
5

2
2
.
2
7
6

1
9
9
.
9
7

2
2
.
2
6
5

2

1
2
-
J
a
n
-
2
0
1
2

1
8
:
4
1
:
5
0

[
1
×
3
6

d
a
t
e
t
i
m
e
]

[
1
×
3
6

d
o
u
b
l
e
]

[
1
×
3
6

d
o
u
b
l
e
]

2
0
0
.
1
4

2
2
.
7
7
7

2
0
0
.
1
6

2
2
.
7
4
7

2

1
2
-
J
a
n
-
2
0
1
2

1
9
:
2
8
:
2
3

[
1
×
3
8

d
a
t
e
t
i
m
e
]

[
1
×
3
8

d
o
u
b
l
e
]

[
1
×
3
8

d
o
u
b
l
e
]

1
9
9
.
9
9

2
2
.
4
8
6

2
0
0
.
0
9

2
2
.
4
5
3

More Complex Queries and Plotting Data

3.4 Diel plots

3.4.1 Retrieve day/night information and produce diel plot with defined times and
coordinates

Set the start (Time1) and end (Time2) times for the period you want day/night
information for:

Time1 = "10-Jan-2011 00:00:22";
Time2 = "27-Feb-2011 15:00:22";

Convert the times to MATLAB serial dates:

starttime = datenum(Time1);
endtime = datenum(Time2);

Set the latitude and longitude (in this example we're using a location near the Aleutian
Islands):

Latitude = 52.7234;
Longitude = 174.7654;

Run a query to retrieve the sunset/sunrise information for the times and location you
defined:

night = dbDiel(query_h, Latitude, Longitude, starttime, endtime);

night will contain the sunset and sunrise at the specified coordinates in MATLAB serial
dates.

If a plot is desired, we can use the function visPresence.

Because all database times are in UTC, we will first set a UTC offset so that our plot will
be in local time for this position close to the Near Islands (part of the Aleutian island
chain) and uses the Hawai’i – Aleutian time zone.

UTCOffset = -10;

We could have used dbTimeZone to compute the offset using nautical timezones which
ignore geopolitical boundaries: dbTimeZone(query_h, Latitude, Longitude, 'nautical'),
although this would return an offset of 12 hours.

We can plot the day/night pattern with visPresence and our night variable (output
from dbDiel) as an argument:

nightH = visPresence(night, "Color", "black", "LineStyle",...
 "none", "Transparency", .15, "Resolution_m", 1/60, ...

 "DateRange",[starttime, endtime], "UTCOffset", UTCOffset);

Example code to copy/paste:

% Retrieve day/night information and produce diel plot with defined
% times and coordinates

% Set the start (Time1) and end (Time2) times for the period you want
% day/night information for:
Time1 = "10-Jan-2011 00:00:22";
Time2 = "27-Feb-2011 15:00:22";

% Convert the times to MATLAB serial dates:
starttime = datenum(Time1);
endtime = datenum(Time2);

% Set the latitude and longitude (in this example we're using a
% location near the Aleutian Islands):
Latitude = 52.7234;
Longitude = 174.7654;

%Run a query to retrieve the sunset/sunrise information for the times
and
%location you defined:
night = dbDiel(query_h, Latitude, Longitude, starttime, endtime);
% night will contain the sunset and sunrise at the specified

0 3 6 9 12 15 18 21 24

h (UTC-9.0)

09-Jan-2011

16-Jan-2011

23-Jan-2011

30-Jan-2011

06-Feb-2011

13-Feb-2011

20-Feb-2011

27-Feb-2011

% coordinates in MATLAB serial dates.

% If a plot is desired, we can use the function visPresence.

% Because all database times are in UTC, we will first set a UTC
% offset so that our plot will be in local time.
UTCOffset = -9;

% Then we will run visPresence using the night variable (
% output from dbDiel) as an argument:
nightH = visPresence(night, "Color", "black", "LineStyle",...
 "none", "Transparency", .15, "Resolution_m", 1/60, ...
 "DateRange",[starttime, endtime], "UTCOffset", UTCOffset);

3.4.2 Retrieve day/night information automatically and produce a diel plot with
detections

Let's produce a diel plot by automatically pulling the location and times from the
deployment(s) across which we are querying.

Define the query parameters:

project = "Aleut";
deployment = 2;
species = "Oo";

Query for detections matching the defined parameters:

detections = dbGetDetections(query_h, "Project", project, ...
 "Deployment/DeploymentId", deployment, "SpeciesId", species);

Find the first and last detection time:

starttime = min(detections(:, 1));
endtime = max(detections(:, 2));

Query for deployment coordinates:

sensor = dbGetDeployments(query_h, "Project", ...
 project, "Deployment/DeploymentId", deployment);

Query for sunset/sunrise information:

night = dbDiel(query_h,...
 sensor(1).Deployment.DeploymentDetails.Latitude{1},...
 sensor(1).Deployment.DeploymentDetails.Longitude{1},...
 starttime, endtime);

Plot the data, as in the previous example:

UTCOffset = -9;

nightH = visPresence(night, "Color", "black", "LineStyle",...
 "none", "Transparency", .15, "Resolution_m", 1/60, ...
 "DateRange",[starttime, endtime], "UTCOffset", UTCOffset);

This time, let's add in the killer whale detections we queried:

speciesH = visPresence(detections, "Color", "b", ...
 "Resolution_m", 5, "UTCOffset", UTCOffset);

Note that if you have dates that describe your detection effort, they can be passed to
visPresence with the ‘Effort’ keyword. Portions of time that do not have effort will be
grayed out. See the function documentation for details, or look at the example in
dbDemo case 5 which creates a local time diel plot.

Example code to copy/paste:

%Produce a diel plot by automatically pulling the location and times
%from the deployment(s) across which we are querying.

%Define the query parameters:
project = "Aleut";
deployment = 2;
species = "Oo";

%Query for detections matching the defined parameters:
detections = dbGetDetections(query_h, "Project", project, ...
 "Deployment/DeploymentId", deployment, "SpeciesId", species);

%Find the first and last detection time:
starttime = min(detections(:, 1));
endtime = max(detections(:, 2));

%Query for deployment coordinates:
sensor = dbGetDeployments(query_h, "Project", ...
 project, "DeploymentId", deployment);

%Query for sunset/sunrise information:
night = dbDiel(query_h,...
 sensor(1).Deployment.DeploymentDetails.Latitude{1},...
 sensor(1).Deployment.DeploymentDetails.Longitude{1},...
 starttime, endtime);

%Plot the data, as in the previous example:
UTCOffset = -9;

nightH = visPresence(night, "Color", "black", "LineStyle",...
 "none", "Transparency", .15, "Resolution_m", 1/60, ...
 "DateRange",[starttime, endtime], "UTCOffset", UTCOffset);

%This time, let's add in the killer whale detections we queried:
speciesH = visPresence(detections, "Color", "b", ...
 "Resolution_m", 5, "UTCOffset", UTCOffset);

3.4.3 Produce a long-term diel plot

We can produce a long-term plot to visualize data. In this example, we will create a diel
plot containing all data for a specified project:

dbYearly(query_h, "Project", "CINMS");

This plot could be made more specific with additional arguments (project, species, call,
etc.). The default for dbYearly is to include shading for nighttime in the plot but this
can be turned off if desired (use the arguments: "Diel", false). With "Diel", true,
dbYearly also outputs sunrise/sunset times. Note: the vertical striped pattern in the
example plot is the result of some deployments having a duty cycle.

3.4.4 Produce a diel plot with lunar illumination

3.4.4.1 The time interval and coordinates are set explicitly

Define the parameters for the query:

Time1 = "10-Jan-2011 00:00:22";
Time2 = "27-Jun-2011 15:00:22";

starttime = datenum(Time1); endtime = datenum(Time2);

Latitude = 52.7234;
Longitude = 174.7654;

Set the time interval over which we will check (interval minutes must evenly divide 24
hours; must be no more than 30 min):

interval = 30;

Smaller intervals sample illumination at a higher resolution, but take longer to compute.
Use dbGetLunarIllumination to get moon illumination:

illu = dbGetLunarIllumination(query_h, Latitude, Longitude,...
 starttime, endtime, interval);

The output will have MATLAB serial dates in column 1 and percent lunar illumination in
column 2.

Example code to copy/paste:

%Retrieve lunar illumination data with explicitly set time period and
%coordinates

%Define the parameters for the query:
Time1 = "10-Jan-2011 00:00:22";
Time2 = "27-Jun-2011 15:00:22";

starttime = datenum(Time1); endtime = datenum(Time2);

Latitude = 52.7234;
Longitude = 174.7654;

%Set the time interval over which we will check (interval minutes must
%evenly divide 24 hours; must be no more than 30 min):

interval = 30;

%Use dbGetLunarIllumination to get moon illumination:
illu = dbGetLunarIllumination(query_h, Latitude, Longitude,...
 starttime, endtime, interval);

% The output will have MATLAB serial dates in column 1 and percent
% lunar illumination in column 2. Create a new figure and use
% visLunarIllumination to display it.

figure;
visLunarIllumination(illu); % show the illumination pattern

3.4.4.2 The time period and coordinates are retrieved automatically to produce a diel plot
with detections

Plot detections with day/night and lunar illumination shown and position and time
derived from the deployment(s) across which we are querying.

Define the parameters for the query:

project = "Aleut";
deployment = 2;
species = "Oo";

Query for detections and deployment information:

detections = dbGetDetections(query_h, "Project", project, ...
 "Deployment/DeploymentId", deployment, "SpeciesId", species);

starttime = min(detections(:, 1));
endtime = max(detections(:, 2));

sensor = dbGetDeployments(query_h, "Project", ...
 project, "DeploymentId", deployment);

Lat = sensor.Deployment.DeploymentDetails.Latitude{1};
Long = sensor.Deployment.DeploymentDetails.Longitude{1};

Retrieve lunar illumination and diel information:

interval = 30;

illu = dbGetLunarIllumination(query_h, Lat, Long,...
 starttime,endtime, interval);

night = dbDiel(query_h, Lat, Long, starttime, endtime);

Make a diel plot in local time:

UTCOffset = -9;

nightH = visPresence(night, "Color", "black", "LineStyle",...
 "none", "Transparency", .15, "Resolution_m", 1/60, ...
 "DateRange",[starttime, endtime], "UTCOffset", UTCOffset);

Add the killer whale detections to the plot:

speciesH = visPresence(detections, "Color", "b",...
 "Resolution_m", 5, "UTCOffset", UTCOffset);

Add the lunar illumination to the plot:

lunarH = visLunarIllumination(illu, "UTCOffset", UtcOffset);

Add a legend for the species:

legendH = legend(speciesH(1), species);

Result:

Example code to copy/paste:

% Plot detections with day/night and lunar illumination shown.
% Position/time derived from the deployment(s) across which
% we are querying.

%Define the parameters for the query:

project = 'Aleut';
deployment = 2;
species = 'Oo';

%Query for detections and deployment information:

detections = dbGetDetections(query_h, 'Project', project, ...
 'Deployment/DeploymentId', deployment,'SpeciesId', species);

starttime = min(detections(:, 1));
endtime = max(detections(:, 2));

sensor = dbGetDeployments(query_h, 'Project', ...
 project,'DeploymentId', deployment);

Lat = sensor.Deployment.DeploymentDetails.Latitude{1};
Long = sensor.Deployment.DeploymentDetails.Longitude{1};

%Retrieve lunar illumination and diel information:

interval = 30;

illu = dbGetLunarIllumination(query_h, Lat, Long,...
 starttime,endtime, interval);

night = dbDiel(query_h, Lat, Long, starttime, endtime);

%Make a diel plot in local time:
UTCOffset = -9;

nightH = visPresence(night, 'Color', 'black', 'LineStyle',...
 'none', 'Transparency', .15,'Resolution_m', 1/60, ...
 'DateRange',[starttime, endtime],'UTCOffset', UTCOffset);

%Add the killer whale detections to the plot:
speciesH = visPresence(detections, 'Color', 'b',...
 'Resolution_m', 5, 'UTCOffset', UTCOffset);

%Add the lunar illumination to the plot:
lunarH = visLunarIllumination(illu, 'UTCOffset', UTCOffset);

%Add a legend for the species:
legendH = legend(speciesH(1), species);

3.4.5 Convenience function for diel and lunar illumination plots

The function visDiel will use query input to automatically create a diel plot of
detections, day/night shading, and (if desired) lunar illumination, without having to
manually collect each component yourself, as shown previously.

To create the plot produced in the last example (killer whale detections in deployment 2
of the Aleutian Islands Project with night shading and lunar illumination) we could use
the query:

visDiel(query_h, 'Project', 'Aleut', ...
 'Deployment/DeploymentId', 2, ...
 'SpeciesId', 'Oo', 'Lunar', true, 'UTC', false);

This function defaults to no lunar illumination, 5 min bin size, and UTC time unless
specified. Within visDiel it is possible to modify the UTC offset and the number of
date ticks on the y-axis.

3.5 Weekly plots

3.5.1 Produce a weekly plot of detections

Plots the number of hours per week with detections for the specified criteria. Note that
the weeks start on Sundays.

In this example, we'll make a weekly plot of active sonar detections from deployment 38
at SOCAL site M.

visWeekly(query_h, 'Project', 'SOCAL', 'Site', 'M',...
 'Deployment/DeploymentId', 38, ...
 'SpeciesId', 'Anthro', 'Call',...
 'Active Sonar', 'Granularity', 'encounter');

CAVEAT: Note that this call will have produced a warning that duplicate effort has
been selected. Pay close attention when this happens as double counts can occur and
display of regions of no effort may be incorrect.

4 Environmental Datasets
Tethys is designed to interface with the NOAA Environmental Research Division Data
Access Program (ERDDAP). This allows users to choose any of the data sets hosted
through ERDDAP and bring the data into MATLAB via a Tethys query. We support
gridded and table data, but do not support the map service.

For more information on ERDDAP, see
http://coastwatch.pfeg.noaa.gov/erddap/index.html and the Tethys Manual.

Tethys 3.2 and later replaces the old ERRDDAP functionality (dbERDDAP and
dbERDDAPSearch) with a class called dbERDDAPServer. The old functionality has not
been removed, but the new class provides the following advantages:

• Easily specify a specific ERDDAP server.
• Arrays of text values are string arrays instead of cell arrays.
• Timestamps are converted to Matlab datetime objects instead of serial dates, making it

easier to inspect values.

http://coastwatch.pfeg.noaa.gov/erddap/index.html

ERDDAP servers are relatively easy to set up and as a consequence many institutions
provide access to data using ERDDAP. The Irish Marine Institute maintains a list of a
number of ERDDAP servers as well as alternative packages for interfacing with
ERDDAP data.

We need access to a Tethys query handler object to create an ERDDAP object:

erd = dbERDDAPServer(query_h);

This creates the interface. The object supports three methods:

• search – look for datasets on the server
• data – retrieve data
• getServer – Report the ERDDAP server being used.

To use an ERDDAP server other than the default one, provide a second argument that
contains the URL of the ERDDAP server. Usually, this is
https://machine.domain/erddap, but can vary.

For instance, the NOAA NCEI server is at:
ncei = dbERDDAPServer(querys_h, ...
"https://www.ncei.noaa.gov/erddap");

In the examples in this section, we will be using the NOAA GEO-IDE server at
https://upwell.pfeg.noaa.gov/erddap.

upwell= dbERDDAPServer(query_h, ...
"https://upwell.pfeg.noaa.gov/erddap");

Find ERDDAP Datasets
To explore available data, an Advanced Search is suggested. The ERDDAP search page
can be found by going to the ERDDAP server directly. You can also use the Tethys
MATLAB client to open the search page for you:

upwell.search(); % Open the search page to explore

https://upwell.pfeg.noaa.gov/erddap
https://upwell.pfeg.noaa.gov/erddap/search/advanced.html

Users can search for available data using space and/or time limits. To search spatially,
users can input latitude and longitude limits, or click on the map of the earth to create a
box. To search for data collected within a specified time frame, the minimum and
maximum time can be added to the search.

For example, to find all of the available data for a region of the Pacific, the spatial limits
are set to latitude between 31 and 33 degrees, and longitude between 239 and 241
degrees.

The results show a table of matching data sets. For more information about a specific data
set, there are columns with a summary of the metadata:

• The data links in GridDAP or TableDap lead to a data access form page about the data
showing the variables measured and fields that let one specify a subset of the data to
download.

• The Background info link provides metadata, and the FGDC and ISO links provide
metadata as XML files. The metadata link shows a summary of the metadata in a web
page.

If the same geographic limits are used and the minimum/maximum time boxes are
populated 2010-03-01T00:00:00Z and a maximum time of 2011-01-01T00:00:00Z, the
table is filtered for data sets that span that time frame. .

The search can also be narrowed by keyword. To find a list of the keywords, see the
ERDDAP website to use the pull down menu in the advanced search. By typing “sst” or
“sea_surface_temperature” in the keyword drop-down, the table is filtered to datasets that
include sea surface temperature.

If there is a specific dataset you want to use for analysis, make note of the DatasetID
(from the last column on the right of the search return). This ID can be used with other
the dbERDDAPServer class’s data method to directly download the data (see the next
example).

Let's pick a dataset and look at it in more detail in ERDDAP. We will select an Aqua
MODIS 8-day composite SST data with 0.0125° of resolution from NOAA (DatasetID:
erdMWsstd8day). By clicking on the “data” under the first column, a complete list of
variables and of the dimensions needed for a query can be viewed.

We see that the data are indexed by time, altitude, latitude, and longitude. The limits for
each index variable are provided, for example, at the time of this writing these data are
available between January 2006 and February 2025. The spacing tells us that the data
measurements are taken about 26.5 h apart (due to the satellite’s orbital path) and there
are 6,750 of these nearly daily observations. There is data for exactly one altitude (sea
level) and we can see the geographic extent of the data as well as the spacing between
measurements (0.0125 degrees).

For the erdMWsstd8day data set, sst is the name of the variable. The required dimensions
are time, altitude, latitude, and longitude. When used with the search method of the
ERDDAP interface class, the DatasetID is followed by a question mark and then the
variable.

In the next section, we will use erdMWsstd8day?sst is used to download sea surface
temperature data. Remember that datasets are ERDDAP server specific, and that all not
servers will have the same data sets. These data are from the
https://upwell.pfeg.noaa.gov/erddap server.

Once you are familiar with ERDDAP search terms, you can specify them in the search
method of your ERDDAP server object, separating each term by an ampersand (&). For
example, the Integrated Ocean Observing System (IOOS) maintains a set of data
categories that include terms such as bathymetry, co2, currents, dissolved_o2,
ice_distribution, etc. We can use ioos_category=bathmetry to search for bathymetry.
ERDDAP’s standard_name provides a wide set of variable names where spaces between

words are replaced with underscores. These are reasonably intuitive, e.g.
sea_surface_temperature. The ERDDAP server class has method categories that will
open up a web browser page listing attributes (e.g., ioos_category) and standardized
values. More details on these search terms can be found at any ERDDAP server, e.g. the
NOAA GEO-IDE UAF ERDDAP server; follow the search for dataset by category links.

As an example, suppose we wished to search for sea surface temperature provided by the
National Centers for Environmental Information (NCEI). We would run the query:

coast.search('keywords=sea_surface_temperature&institution=ncei')

The search method will return the web address corresponding to your search. You could
cut and paste this into a browser, but this is not needed as MATLAB will open a new
browser window displaying the results. The window should show a number of datasets
that include sea surface temperature produce by NCEI. You can refine or change your
search from this page.

4.1 Download ERDDAP data

4.1.1 Example 1

Suppose we wished to access a subset of the sea surface temperature (SST) dataset
identified in the previous section: erdMWsstd8day?sst. We will use the upwell
dbERDDAPServer object that we created in the last section that is connected to
https://upwell.pfeg.noaa.gov/erddap . From the previous example, we know that the SST
data are indexed by time, altitude, latitude (degrees North) and longitude (degrees East).
We can use method get to pull in the data.

In this example, we will search for data on a small grid of the coast of southern California
on November 13th, 2012. We need to specify each axis. ERDDAP requires a set of array
indices indicating the portion of the dataset to retrieve. As there are four index variables,
there will be four sets of array indices []. Each array index must have the form

[start:stride:end]

where start is either an index number into the data or is specified in the units of
measure, e.g. a timestamp for a time axis. For grid a grid axis of size N, indices range
from 0 to N-1. When referencing by unit, you must surround the value with parentheses
(). We indicated that we wanted to retrieve data from November 13th, 2012. We would
specify this as follows using ISO8601 time notation: YYYY-MM-DDTHH:MM:SSZ
where Z indicates that the time is in UTC.

[(2012-11-13T00:00:00Z):1:(2013-02-13T00:00:00Z)]

Subsequent indices are handled similarly.

https://upwell.pfeg.noaa.gov/erddap/index.html

% We created the upwell server object in the last section
% If you have closed your MATLAB, be sure to create a query
% handler and recreate the ERDDAP object:
% upwell= dbERDDAPServer(query_h, "https://upwell.pfeg.noaa.gov/erddap");

data = upwell.get('erdMWsstd8day?sst[(2012-11-
13T00:00:00Z):1:(2013-02-
13T00:00:00Z)][(0.0):1:(0.0)][(33.47):1:(33.59)][(240.7):1:(240.8
0)]');

The returned data is a structure that contains three fields:

 Axes: [1×1 struct]
 Data: [1×1 struct]
 dims: [9 10 1 1]

• Axes – Description of the axes
• Data – A structure with the returned data.
• dims – The dimensions of the data

The Axes structure contains fields that describe the data axes:

• names – An ordered array of the axes names indicating how the returned data are
organized, e.g. data.Axes.names(1) is “longitude” with the remaining values
being latitude, altitude, and time.

• units – String array of measurement units for each axis. In this case: degrees_east,
degrees_north, m, and UTC.

• types – String array of data types for the axes units. Here, all units are doubles
except for the time measurements which are datetime objects.

• values – Cell array of values corresponding to grid positions on each of the axes.
The names entry lets us know the order of these, so data.Axes.values{4} is a list
of datetime objects defining the days The value that corresponds to points on the
label axes. For example, to see the latitudes, we would examine the 2nd cell entry:

 >> data.Axes.values{2}

The Data field contains the actual data and contains the following information:

• names – String array of variables returned. As we only requested SST,
data.Data.names(1) is 'sst'.

• units – String array indicating the unit of measurement for each variable name
(degree_C in this case).

• types – String array describing the data type for each value. Here, the data were
returned as type 'float'. Even though MATLAB stores these as double-precision
numbers, ERDDAP stored them as single-precision numbers. If numerical
precision to many digits is important to your research question, this may be
important to you.

• values – A cell array with one entry per variable returned. As we only requested
SST, values{1} contains a 9 x 10 matrix of doubles that corresponds to the
temperatures we requested.

The sst data can now be plotted using the mapping toolbox or saved for use in other
software packages.

Retrieval times for ERDDAP data depend on the amount of data queried, the
complexity of the data set, and the current load on the server. It is not uncommon
for large queries to take non-trivial amounts of time to complete.

4.1.2 Example 2

Here’s a more complex example that finds bathymetry 400 km2 around a specified point
in the Southern California Bight. Note: this example requires the MATLAB mapping
toolbox.

We must define our point (center) and the area we want bathymetry data for (box) by
converting square kilometers (range_km) to degrees (delta_deg):

center = [33.515 240.753];
range_km = 20;
% If you have the Mapping toolbox: delta_deg = km2deg(range_km);
delta_deg = 0.18;
box = [center - delta_deg; center + delta_deg];

Then we must identify a bathymetry dataset that covers the area we've defined. We first
define our criteria:

geospec = sprintf('minLat=%f&maxLat=%f&minLon=%f&maxLon=%f',
box(:));
criteria = ['ioos_category=bathymetry', '&', geospec];

And then run our query:

dbERDDAPSearch(query_h, criteria);

We see that there are 10 bathymetry data sets that might meet our purposes. We settle on
the San Diego, California Tsunami Forecast Grids for MOST Model:
noaa_ngdc_ec9d_8632_6ca3 which has unevenly spaced data sampled approximately
0.017 degrees apart.

dataset = 'noaa_ngdc_ec9d_8632_6ca3';
geoind = sprintf('[(%f):1:(%f)][(%f):1:(%f)]', box(:));
data = upwell.get(sprintf('%s?bathy%s', dataset, geoind));

The bathymetry data are in data.Data.values{1}

Example code to copy/paste:

% Download and use ERDDAP data Find bathymetry in a 400 km2 sqaure
% centered at a specified point in the Southern California Bight

% We define a center point lat/long for our bathymetry
% and add offsets corresponding to 10 km.
center = [33.515 240.753];
% We need the change in lat/long corresponding to a 10 km offset
% in each direction.
range_km = 10;
% If we have the mapping toolbox, we can use
% delta_deg = km2deg(range_km);
% which would produce the following value:
delta_deg = 0.089932160591873;
box = [center - delta_deg; center + delta_deg];

% Identify a bathymetry dataset that covers or box
% Set our search criteria:
geospec = sprintf('minLat=%f&maxLat=%f&minLon=%f&maxLon=%f', box(:));
criteria = ['ioos_category=bathymetry', '&', geospec];

%And then run our query:
upwell.search(criteria);

% We see that there are multiple bathymetry data sets that might
% suit our purposes. We settle on the San Diego, California Tsunami
% Forecast Grids for MOST Model: noaa_ngdc_ec9d_8632_6ca3
% which has unevenly spaced data sampled approximately
% 0.017 degrees apart.
dataset = 'noaa_ngdc_ec9d_8632_6ca3';
geoind = sprintf('[(%f):1:(%f)][(%f):1:(%f)]', box(:));
data = upwell.get(sprintf('%s?bathy%s', dataset, geoind));

% The bathymetry data are in data.Data.values{1}

5 Add Files to the Database

An interface for submitting documents to the database can be accessed from MATLAB
with:

dbSubmit();

To use a specific server, use:

dbSubmit('Server', 'yourserverName');

On this popup, the first input is your server address. In many cases, this will be your local
host address which can be written as http://127.0.0.1:9779.

The second input is a drop-down to choose the appropriate collection to submit your
document to. This includes Detections, Calibrations, Deployments, Ensembles,
Localizations, Source Maps, and Species Abbreviations.

The third input is a drop-down to indicate the appropriate source map. Source maps
provide directions on how data contained in the document you are submitting are mapped
to Tethys when your data are not already in Tethys-ready XML format. If there is a
source map listed in your input file (for example, a Detections Excel Sheet under the
Metadata tab would list the parser) you can choose “Embedded in data”. The Source Map
needs to be part of the Tethys server, if it is new, you will need to import the Source Map
first.

The fourth input is a drop-down to indicate the appropriate species abbreviations to use.

Next, there are several tabs to select the file to be added to Tethys. To add an individual
file from a network location, click on the “File import ” button and navigate to the file to

be added to Tethys. Click the “Submit to Tethys” button and your document will be
submitted, with confirmation (shown below) or errors displayed in the message areas.

If you wish to overwrite an existing Tethys document, click the overwrite existing
checkbox. Otherwise, trying to submit a document twice will fail and you will receive an
error message:

More details on the other tabs can be found in the Data Import manual. Briefly, 'Multiple
Sources' allows one to combine data from multiple files or databases into one document.
The ODBC tab allows one to import data from databases and requires that the source map
contain database queries. ODBC allows one to treat many types of data as if they were a
database. As an example, one can import Excel documents using this interface. The
'Document Browser' populates a tree view of submitted documents by name.

6 Appendix: MATLAB Function List
Note: For function definitions within MATLAB, type the following into the command
window:

>>help FunctionName
or
>>doc FunctionName

For example:

>>help dbDemo

produces the output:

dbDemo(exampleN, OptionalArgs)
 Examples of using the Tethys database.

 example - example N, see switch statement for details.
 Optional keyword value pair arguments:
 'Server' - Override default server name
 'Port' - Overrride default port
 'QueryHandler', q - Use an existing query handler rather than
 a new one. Note that Server and Port arguments are ignored
 if this is specified.
 'Debug', true|false - Produce debug information for some
 plots.

dbCannedReports

Allows the user to quickly create a summary of the data returned in a query. The
output includes a file of summary statistics. dbCannedReports differs from
dbCannedReportsLoSubtype in that summary statistics are included.

dbCannedReportsLoSubtype

Allows the user to quickly create a summary of the data returned in a query.

dbDateToOffsets

Converts one or two columns of serial dates to day numbers and resolution_m
bins. For one-column data, a second column will be added which is resolution_m
minutes after the start time. For two-column data, the second column is rounded
up to the start of the next bin.

dbDemo

Provides a demonstration of some common uses of the Tethys database and tools.
The examples can be used to confirm that the software is installed and configured
correctly, or as a template for the user's metadata analyses. These examples use
sample data included with the Tethys download. Example 1 queries for all
unidentified whale detections associated with a specific deployment and site.
Example 2 queries for three types of whale calls. Example 3 displays information
on the project, deployment, and site for the data used in a query. Example 4 uses
the entire database, rather than a query subset, to create a summary of effort for
the entire database. In example 5, a diel plot of detections for a given species,
deployment, and site is produced. Example 6 returns all the detections for a given
project. Example 7 lists all of the species and all of the call types found in the
database. Example 8 produces a diel plot and a weekly effort plot. Example 9
produces a diel plot with detections and lunar illumination. Example 10 is an
example of a query written in XQuery. Example 11 grabs chlorophyll data from
ERDDAP and plots it with call presence. Example 12 is another ERDDAP
demonstration, where an animation of sea surface temperature is displayed for
specific coordinates. Similarly, example 13 shows an animation of wind speed.

dbGetDeployments

Retrieves information for specified deployments. Returns an array where each
element is a structure with fields about fixed deployments. Note: This function
was called dbDeploymentInfo in older versions of Tethys.

dbDeployments2kml

Writes a KML file with all deployments meeting the criteria and displays them in
Google Earth. Note: this requires the MATLAB kml toolbox.

dbDetections2XML

Generates XML from a set of detections.

dbDiel

Returns the sunrise and sunset times for a specific location and date range. All
times are in UTC, not local times.

dbERDDAP (deprecated)

Returns the results of an ERDDAP query.

dbERDDAPSearch (deprecated)

Searches NOAA's Environmental Research Division Data Access Program
(ERDDAP) catalog for datasets matching desired parameters. Search parameters
are any valid set of ERDDAP keywords. Each keyword is followed by an = sign
with a search value. Multiple keywords are joined by &. Some common keywords
are: bathymetry, calcofi, chlorophyll-a, goes, ice, noaa, ocean-color. For a full list
of keywords go to http://coastwatch.pfeg.noaa.gov/erddap/categorize/keywords/

dbERDDAPServer

Class for finding environmental data sets and retrieving their data using the
protocol defined by NOAA's Environmental Research Division Data Access
Program (ERDDAP). ERDDAP server is specified when an object is initialized,
and defaults to one chosen by the server if not specified. ERDAP servers will
have different datasets. See example in this tutorial for usage details.

search – method for finding data. Search parameters are any valid set of

ERDDAP attributes and standardized categorical values. Data shown in
the search result will contain the specified criteria. Syntax of the search
string is "attribute1=value1&attribute2=value2&…&attributeN=valueN".
See method categories for determining attributes and categories.

get – method for retrieving data
getServer – return the ERDDAP server that is being used
categories – Open a browser window to explore the list of attribute names and

categorical values.

dbFindFiles

Searches for files in the current directory or a given directory.

dbGetCalltypes

Given a database query, return a list of call types meeting the associated metadata
and detection data predicates.

dbGetCannedQuery

http://coastwatch.pfeg.noaa.gov/erddap/categorize/keywords

Returns a canned (previously saved) query.

dbGetDetections

Retrieves all detections meeting specified criteria from database. Detections are
returned as a timestamps matrix of MATLAB serial dates. The timestamps will
either be single times that represent a detection within a binned interval or span a
time interval.

dbGetDetectionEffort

Retrieves effort information from Tethys detection effort records. Effort is
returned as a matrix of MATLAB serial dates containing the start and end times in
each row.

dbGetEvents

Retrieves all events meeting specified criteria from the database. Events are
returned as a timestamps matrix of MATLAB serial dates. The timestamps will
either be instantaneous or span an interval.

dbGetLunarIllumination

Returns information from the database about the lunar illumination percentage
between the start and end UTC serial timestamps (datenums) in the specified
interval.

dbGetSpecies

Determines which species have been detected for a given expedition and site.

dbGetUsers
 Returns a cell array with users that have detection effort.

dbInit

Creates a connection to the Tethys database. With no arguments, a connection is
created to the default server defined within this function. Returns a handle to a
query object through which Tethys queries are served.

dbISO8601toSerialDate

Given a cell array of ISO8601 format dates: YYYY-MM-DDTHH:MM:SS.FFFZ
(e.g. 2010-02-09T07:39:22.325Z) convert to MATLAB serial dates.

dbJavaPaths

Makes sure Java classes on path.

dbNormDiel

Given a set of detections and diel information specifying nighttime, renormalizes
detections to represent a 12-hour day/night period by linear interpolation.
Assumes that both detections and night are sorted by timestamp and converted to
local time (or in UTC with a provided UTCoffset) so that night fall is after sunrise

each day. Assumes that there are no detections outside of the night intervals
except for the day before and after the first and last night respectively.

dbParseDates

Given a set of records returned from a dbXPathDOMQuery, parses timestamp
fields and returns them as a matrix of MATLAB serial dates. Each row
corresponds to the timestamps associated with a single record.

dbPresenceAbsence

Computes presence/absence in resolution_m increments. Presence is a one or two
column matrix giving starting (and possibly ending) times as MATLAB serial
dates. If end time is unavailable, only the resolution_m segment containing the
start time will be selected. Dates are assumed to be UTC and sorted.

dbRelOp and dbRelOpChar

Helper functions for translating numeric comparisons into XQuery fragments. Not
intended to be called directly by the user.

dbRemoveDocument

Removes the specified document from the database.

dbRemoveOverlap

Given a matrix of row-oriented start and end dates, returns a new matrix where
overlapping rows have been removed.

dbRunQuery

Run the query based on a query string.

dbRunQueryFile
Run the query based on a filename.

dbSerialDateToISO8601
Converts a set of MATLAB serial dates to ISO8601 format. Assumes that the
dates are in UTC.

dbSpeciesFmt

Sets the species naming format used for XQueries (tsn, Latin name, or
abbreviation) as well as how those results will be displayed.

dbStats

Generates statistics on daily and hourly bins with calls and percentages in regards
to effort from Tethys database.

dbSubmit

Submits files to the database. Files may be a single filename, a cell array of
filenames, or omitted in which case a GUI prompts for a single file submission.

dbSpeciesAbbreviations
Tethys servers maintains named lists of custom ecoding systems (species maps)
for taxonomic names. This function retrieves the a list of coding system names or
the mapping between taxonomic classes and abbreviations for a specific coding
scheme.

dbTimeZone
 Retrieves offset from UTC time for specified longitude and latitude.

dbDetectionsForUser
 Returns a list of documents submitted by the specified user.

dbXPathDomQuery

Given a document object model representation of a document, runs an XPath
query on it.

dbYearly
Produces a long-term plot containing all data for a given site.

dbYearlyReport

Generates reports from Tethys database.

visDiel

Convenience function for querying detections and plotting them in a diel plot.

visCyclic

Plot cyclic data in a polar plot with labels as specified.

visLunarIllumination

Parses an illumination query return and plots it on the given figure.

visPresence

Shows a presence/absence plot in specified increments. Dates are assumed to be
UTC and sorted.

visPresenceAbsence

Shows a presence/absence plot in specified increments. Dates are assumed to be
UTC and sorted.

visWeekly

Plots the number of hours per week with detections for the specified criteria.
Weeks start on Sunday, which may cause slight shifts in distributions from other
tools that may choose to start weeks on the first day of effort

visWeeklyEffort

Generates a plot of detections and effort by week for a given species. Detections
can be narrowed down by call, call subtype, and/or species group. Multiple
deployments for a given site can be appended to the same plot, but multiple sites
will have their own plot. The right-hand y-axis will always correspond to the

percentage of effort for that week, denoted by a dot if less than 100%. The left-
hand axis will be either "Cumulative hours per week" for encounter granularity,
or "Total Detections per week" for call granularity.

	1 Getting Started
	1.1 Set your MATLAB path
	1.2 Set a query handle object
	1.3 Set species abbreviations

	2 README: Important note about examples
	2.1 Release Notes

	3 Querying the Database
	3.1 Deployments
	3.1.1 Retrieve information for all deployments
	3.1.2 Get a list of projects from retrieved deployment info
	3.1.3 Retrieve deployment info for specific projects and/or sites
	3.1.4 Find all deployments in a specific latitude range

	3.2 Detections
	3.2.1 Detection Effort
	3.2.1.1 Retrieve effort for a specific project
	3.2.1.2 Retrieve effort for a specific deployment

	3.2.2 Detections
	3.2.2.1 Retrieve detections for a specific project/site/species
	3.2.2.2 Retrieve detections for a species group
	3.2.2.3 Retrieve detections for a given date and time range

	3.3 Localizations
	3.3.1 Localization Effort
	3.3.2 Localizations

	3.4 Diel plots
	3.4.1 Retrieve day/night information and produce diel plot with defined times and coordinates
	3.4.2 Retrieve day/night information automatically and produce a diel plot with detections
	3.4.3 Produce a long-term diel plot
	3.4.4 Produce a diel plot with lunar illumination
	3.4.4.1 The time interval and coordinates are set explicitly
	3.4.4.2 The time period and coordinates are retrieved automatically to produce a diel plot with detections

	3.4.5 Convenience function for diel and lunar illumination plots

	3.5 Weekly plots
	3.5.1 Produce a weekly plot of detections

	4 Environmental Datasets
	4.1 Download ERDDAP data
	4.1.1 Example 1
	4.1.2 Example 2

	5 Add Files to the Database
	6 Appendix: MATLAB Function List

